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SUMMARY

This report presents the results of a study to implement convergence acceleration techniques

based on the multigrid concept in the two--dimensional and three-dimensional versions of

the Proteus computer code. The first section presents a review of the relevant literature on the

implementation of the multigrid methods in computer codes fro compressible flow analysis.

The next two sections present detailed stability analysis of numerical schemes for solving the

Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the

bi-grid analysis, respectively. The next section presents details of the computational method

used in the Proteus computer code. Finally, the multigrid implementation and applications to

several two-dimensional and three-dimensional test problems are presented.

The results of the present study show that the multigrid method always leads to a reduction in

the number of iterations (or time steps) required for convergence. However, there is an

overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D

problems than in 3-D problems, thus overall multigrid savings in CPU time are in general

better in the latter. Savings of about 40-50% are typical in 3-D problems, but they are about

20-30% in large 2-D problems. The present multigrid method is applicable to steady-state

problems and is therefore ineffective in problems with inherently unstable solutions.

(Updates for running the multigrid versions of the Proteus computer code and the stability

analysis codes are contained in a supplement to this report.)
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Chapter 1

INTRODUCTION

The field of Computational Fluid Dynamics (CFD) has been substantially developed to

unravel the underlying physics of many complex flow phenomena that are difficult or even

impossible to study experimentally. The success of CFD is directly linked with the rapid

development of computers in the last two decades. A great number of numerical algorithms

have been formulated to resolve the physics that characterize different aerodynamic fluid

flow problems. The necessity to study the finely detailed models of physics in a steady or

unsteady flow demands fine grid resolutions and a good choice of solution technique. For

flows with engineering significance, the full Navier-Stokes equations, very often the

Reynolds-averaged form, have been found to yield acceptable results for flow

characteristics including heat transfer. However, even for this time-averaged

approximation, the computational cost is often too expensive. To reduce this cost,

acceleration techniques such as residual smoothing, local time stepping, enthalpy damping

and multigrid are introduced. So far, multigrid is considered the most effective, especially

when used to solve a strongly elliptic problem where only one or a few iterations are needed

for convergence. Structurally, multigrid algorithms iterate on a hierarchy of consecutively

coarser and coarser grids to accelerate convergence on the finest grid. However, the total

computational work involved to capture real physical changes with multigrid is effectively

less when compared to single grid computations.



1.1 Historical Review of Multigrid Methods

Multiple grids were first proposed in the form of two-grid level schemes to accelerate the

convergence of iterative procedures by Southwell (1935), Stiefel (1952), Federenko (1961),

amongst others. Full multiple grid methods were introduced for the Poisson equation by

Federenko (1964) and the approach was generalized by Bakhalov (1966) to any

second-order elliptic operator with continuous coefficients. According to Stuben and

Trottenberg (1982), Hackbush (1976) also independently developed some fundamental

elements of the multigrid method. Perhaps the most influential work on the application of

multigrid methods to elliptic type problems is the paper by Brandt (1977) which also

introduced the use of local mode analysis to determine the smoothing rates of multigrid

schemes. Multigrid acceleration was also successfully applied to the transonic potential flow

equation, which is of mixed elliptic-hyperbolic type, by South and Brandt i 1976), Jameson

(1979), McCarthy and Reyhner (1982), and a host of other researchers.

Most of the theory of the effectiveness of multigrid schemes pertained to problems with some

measure of ellipticity. However, Ni (1981) proposed a distributed correction multigrid

method based on an explicit scheme for solving the Euler equations in the steady state.

Convergence acceleration due to the multigrid scheme was by at most a factor of five which

was worse than typical speedup factors in applications to elliptic equations. Furthermore the

scheme was only first-order accurate and was restricted to a CFL number of one. Jameson

(1983) proposed an explicit four-stage time stepping multigrid algorithm for the

steady-state Euler equations. The method was second-order accurate and the limiting CFL

number for stability was 2.6--2.8. The mechanism for multigrid convergence acceleration

to steady state in systems with little ellipticity is that larger time steps can be taken on coarser

grids, while still maintaining the same CFL number, such that disturbances are more rapidly

expelled through the boundaries. The interpolation of corrections from the coarse grid to the

fine grid may introduce additional high frequency errors which must be rapidly damped if
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the schemeis to be effective. Thus a requirementof any solution schemeto be used

successfullyin amultigridprocedureis thatit rapidlydampenshighfrequencymodesof the

error.

Mulder (1989)presentedamultigridschemeto solvethetwo dimensionalEulerequations

with a finite-volume method which usedvan Leer's flux-vector splitting for upwind

differencing and a symmetricGauss-Siedelmethodas a relaxation scheme.Multigrid

speedupfactors were roughly nine and six for first-order and second-orderaccurate

schemes,respectively.Andersonet al. (1988)alsofound similar multigrid convergence

accelerationratesin thesolutionof thethree-dimensionalEulerequationswith flux-vector

splitting and three different approximatefactorization schemes.Typically, 200---400

multigrid cycleswererequiredfor convergenceto thelevel of the truncationerrors.An

interestingresultwasthat althoughthethree-factorspatiallysplit factorizationwasstable

only for CFL numbersbelow20, it producedthefastestmultigrid convergenceof all the

schemes.This wasobtainedata CFLnumberof seven.

JamesonandYoon(1986)presentedfinite-volume basedmultigrid methodsfor the 2-D

Euler equationsusing an ADI schemewith approximatefactorization.The differential

operatorswere approximatedwith centraldifferenceswith secondandfourth-difference

artificial dissipationtermsaddedfor stability andconvergence.It wasfound thatimplicit

fourth differencedissipationwas requiredfor efficient multigrid convergence.However,

this requiredthesolutionof ablock pentadiagonalsystemwhichwasmoreexpensivethan

the block-tridiagonal system resulting from the use of implicit second-difference

dissipation.Comparedwith thesinglegridcomputationthemultigridspeedupfactor(based

onresidualreduction)wasabouteightin theformerandfour in thelatter.Multigrid methods

coupledwithgrid sequencingenabledquiterapidestablishmentof thesolutionfields,sothat

basedon thebuildupof thesupersonicregion,thespeedupfactorsin thestudyabovewere

twice as large. The problem with the ADI schemeas a baselinesolver is that in



three-dimensions, a three-factor split is required and linearized stability analysis shows that

this is only conditionally stable. To alleviate this problem Jameson and Yoon (1987) devised

a multigrid method for 2-D Euler equations which used the lower-upper (LU) factorized

implicit scheme of Jameson and Turkel (1981) as the baseline solver. Yokota and Caughey

(1988) have developed a similar scheme for the calculation of three--dimensional transonic

flow through rotating cascades. The scheme has only two factors and is unconditionally

stable. It is indeed very similar to the flux-vector splitting method based on the

eigenvalue-factored split investigated by Anderson et al. (1988). Their finding that although

the three-factored split (similar to ADI) is only conditionally stable, it provided a better

multigfid convergence rate than the unconditionally stable eigenvalue-split method (similar

to LU), is noteworthy. However, one advantage of the LU scheme is that it requires cheaper

block-bidiagonal inversions compared with block-tridiagonal or pentadiagonal inversions

for an ADI scheme. The latter is necessary if implicit fourth-difference dissipation terms are

used for better accuracy and convergence. Caughey (1988) demonstrated that block-

pentadiagonal inversions in the ADI scheme could be reduced to scalar pentadiagonal ones

by using a local similarity transformation to diagonalize the equations at each point. Thus,

the computational work was reduced by a factor of four, and the decoupled system had

similar convergence characteristics as the original one. Caughey and Iyer (1988) applied the

scheme to solve the Euler equations for a supersonic inlet flow and found that the multigrid

speedup factor was only 2.5, i.e., somewhat less than was found in transonic and subsonic

flows. Yokota, Caughey and Chima (1988) also diagonalized the LU implicit multigrid

scheme with no degradation in performance.

So far in this review, we have considered the application of multigrid methods to the Euler

equations or potential flow equations. Several applications to the Navier-Stokes equations

for incompressible fluid flow have been reported (Vanka (1986), Demuren (1989),

Thompson and Ferziger (1989), Demuren (1992)). The relaxation schemes in all these

applications are pressure-based in contrast to time-stepping schemes more common in

4



compressible flow applications. Multigrid speedup in the range of a few percent to factors of

hundreds have been reported. It is likely that in the latter cases, the baseline relaxation

scheme did not have good convergence properties for the particular applications. However,

one of the attractions of the multigrid method is that a poor single-grid solver may actually

have good high frequency smoothing properties and thus be an effective multigrid relaxation

scheme. Rhie (1989) presented a pressure-based multigrid method for solving the

Navier-Stokes equations over the range of flow speeds encompassing both the compressible

and the incompressible fluid flow. Himansu and Rubin (1988) also presented a novel

pressure-based multigrid method for the reduced Navier-Stokes equations for compressible

and incompressible fluid flows. Apart from the obvious difficulties of the treatment of

viscous terms and the implementation of a turbulence model, the solution of the

Navier-Stokes equations usually requires the clustering of grids near walls in order to

resolve the boundary layer, which often increases the stiffness of the system of equations and

slows down the convergence rate of many iterative schemes. Multigrid convergence

acceleration also tended to degrade with increase in Reynolds number. These difficulties fall

under the category of problems with standard multigrid methods classified by Brandt (1977)

as due to the alignment of coefficients of difference equations. He proposed that the problem

be overcome by doing line relaxations in 2-D or plane relaxations in 3-D in the direction of

alignment, or to perform only semi-coarsening of the grids in one of the directions instead of

the more usual full coarsening, which should reduce the anisotropy of the coefficients.

Himansu and Rubin (1988) implemented some aspect of both strategies with some success.

Mulder (1989) considered the problem of alignment in somewhat more details and found

that semi-coarsening in one direction was inadequate to cure it. Rather, it must be used in

several directions at every grid level. Hence, in a 2-D problem two coarse grids are created

for each finer grid, which implies that the total number of grid points and hence the operation

count would be the same at each grid level. Such a scheme would negate one of the

advantages of the multigrid method, namely, that all the computational work in performing



relaxationson coarsegrids wascheaperthancomparablework on thefinest grid. So he

deviseda specialprocedurewhichensuredthaton coarsegrids, thetotal number of grids

pointswasreducedandlesscomputationalworkwasdone.Theresultingschemewasshown

tobeefficientin resolvingsomeflowswithalignment,butit appearsto berathercomplicated

toimplement,andit is doubtfulthatit will find itsway intoageneralpurposecomputercode

anytimesoon.

Implementationof the multigrid method in time-stepping solution schemesfor the

compressibleNavier-Stokesequationsappearto bea straightforwardextensionof that for

the Euler equations.Although, for the reasonsgiven above,worse performancemay be

expected.Chima,Turkel andSchaffer(1987)comparedimplementationsof threetypesof

multigrid methodsin explicit time-steppingmultistagesolutionmethods for Euler and

Navier-Stokesequations. They found the Full multigrid-Full approximationstorage

(FMG-FAS)methodproposedbyBrandt(1977)to bethemostefficientproducingspeedup

factorsof about8.5 in thesolutionof theEulerequationsfor selectedproblems,but only

about2.1 in the solution of theNavier-Stokesequations.Multigrid schemeswhich use

explicit time-steppingalgorithmto solvethe3-D, compressibleNavier-Stokesequations

have also beenreportedby Arnoneand Swanson(1988),Radespiel et. al (1990) and

Swansonand Radespiel(1991). Theseare mostly central-differencing approximation

methods,andthechoiceof artificial dissipationwasfoundtobevery importantfor efficient

convergence.Yokota(1989)extendedthepreviousimplementationfor theEulerequations

(Yokotaet. al, (1988)) to the Reynolds-averaged,Navier-Stokesequations.The k - e

turbulence model was used to approximate the Reynolds stresses. Application to the

calculation of the three-dimensional flow through blade passages showed convergence rates

similar to those for the Euler equations. The use of wall-functions meant that the boundary

layer need not be tully resolved so that grids with very high aspect ratios could be avoided,

and hence, the lack of performance degradation. A novel method for solving the



compressible,steady, Navier-Stokesequations was presentedby Koren (1990). A

first-order accurateupwind methodwith goodsmoothingpropertieswas used for the

discretization of the equations. Second-order accuracy was achieved through defect

correction. The whole multigrid scheme exhibited good convergence characteristics in

smooth flows, but somewhat poorer performance in non-smooth flows with shocks.

In the computation of flows in very complex geometries such as around multi-element

airfoils or in complex inlet sections, two approaches are popular: unstructured grids or

multiple blocks of structured grids. Multigrid acceleration has "also been achieved in

solutions of the Euler and Navier-Stokes equations with either approach. Mavripilis (1988,

1990) has demonstrated good multigrid convergence for the solution of the Euler equations

on unstructured triangular meshes. Mavripilis and Jameson (1990) presented a similar

implementation for the Navier-Stokes equations. Multigrid, multiblock methods were

presented for the Euler equations by Yadlin and Caughey (1991 ) and for the Navier-Stokes

equations by Baysal et. al. (1991) and Elmiligui (1992).

1.2 Time Integration

Accurate evolution of time-dependent fluid flow problems and the stability of numerical

schemes are greatly dependent on the type of time integration employed. Time integration

techniques that have been used to solve the Navier-Stokes equations can be broadly

classified as either explicit or implicit schemes.

In explicit methods, a single set of unknown vectors that are required to be solved appears on

the one side of the algebraic equations resulting from discretization. Solutions to these

vectors at the present time are completely dependent on the solutions at previous times.

Explicit methods are very easy to work with and need fewer operation counts, especially for

unsteady problems. They are very efficient for unsteady flows with little variation in velocity

and mesh density. However, they suffer from severe limitation on the time step due to
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stability requirements.Wherestability requirementsdictatevery small time steps,the

temporalaccuracymay beimpairedand/orthe computationtime to drive thesolution to

steadystatemay becomeexcessive.Also explicit techniquesdemandthat eachequation

solvedshouldhaveatimederivativeterm,but in incompressibleflow this is absentin the

continuity equation.In this casea specialtreatment(e.g. the introduction of artificial

compressibility)maybenecessary.This,of course,detractsfrom its advantages.

Implicit methodsaredesirableespeciallyfor stiff problemswheredisparatetime scalesare

associatedwith thegoverningequations;e.g.,in combustionprocesses.Implicit methodsare

unconditionally stableand thus allow for larger time steps,limited only by accuracy

requirements,non-linearityandboundarytreatment.Althoughtheyrequirelargeroperation

countswhencomparedwith explicit schemes,theymay be optimumin time-dependent

problemswhenthetimescaleof theunsteadyphenomenonismuchlargerthanthetimestep

allowedbytheCourant-Fredriechs-Lewis(CFL) condition(e.g.,flow alonganoscillating

airfoil). Thepossibilityof utilizing alargertimestepthantheCFL limit leadsto awelcome

gain in computationalefficiency.Sinceasystemof algebraicequationsis solvedeitherby

director iterativemethodsateachtimestep,theimplicit differenceoperatorisconstructedto

guaranteediagonaldominancefor convenientresolutionof theequations.Sometimesin

orderto makethecomputationof thealgebraicsetof equationsamenableto thetridiagonal

matrix solutionmethod,animplicit schemecanalsobecastinto apredictor-correctorform,

wheretheimplicit termisapproximatelyfactoredintoasetof smallertermseitheroverspace

oreigenvalue.ThemostpopularmethodsincludetheAlternatingDirectionImplicit (ADI),

theLowerandUpper(LU) decompositionandsomeupwindbasedfactorizationmethods.In

this work severalkinds of approximatefactorizationschemeswill be investigatedfor

stability.



1.3 Stability Analysis

Although implicit numerical schemes allow for larger time steps for advancing the solution

of the Euler and Navier-Stokes equations to steady state, approximate factorization (AF) is

often introduced for efficiency. In the approximate factorization method, the complicated

multi-dimensional matrix equation obtained at each time step is approximately factored into

simpler one-dimensional terms which are easily invertible. Although this technique reduces

the computational cost by taking advantage of the Tridiagonal Method (TDM), the

approximation introduces errors that may place limitations on the CFL number and, thus, on

the overall efficiency of the algorithm. As observed by Thomas et al. (1985), the

approximately factored scheme has even greater stability restrictions in 3-D, and also an

optimal convergence time step that is not known a priori. Therefore, to avoid the long and

costly approach of trial and error of obtaining an optimal CFL number, it is highly desirable

to carry out a stability analysis for any numerical scheme. Some researchers have found that

analyzing scalar equations such as the convection or the diffusion equation can provide

insight into the stability requirements for Euler and Navier-Stokes equations. Beam and

Warming (1978) employed a combination of these scalar equations to approximate the

restriction that were placed on their ADI methods for compressible Navier-Stokes

equations. Jameson and Yoon (1986) and Caughey (1988), among others, used the scalar

convection equation as a model problem for the Euler equations to investigate appropriate

conditions for multigrid implementation. Rather than utilizing model equations, Jespersen

and Pulliam (1983) developed a technique whereby Fourier analysis is extended to the actual

coupled equations for the quasi-one-dimensional Euler equations. Jespersen (1983) further

extended this technique to the 2-D Euler equations in order to find the best conditions at

which to implement multigrid for a transonic flow. Thomas et al. (1985), von Lavante (1986)

and Anderson et al. (1988) have also utilized a similar approach in the stability analysis of the

Euler equations for certain approximate factorization and relaxation schemes. Finally,
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Demurenand Ibraheem(1993,1994)havealsoadoptedthis approachto investigatethe

stability of certain implicit solution techniquesof the 3-D Euler and Navier-Stokes

equations.Utilizing thefrozencoefficientsfrom actualsupersonicandtransonicflow fields

of aquasi1-D Eulerequations,theyfurtherestablishedthesuitabilityof usinguniformflow

field in thestability analysis.

Substantialprogresshasbeenmadeto developthemultigrid methodboththeoreticallyand

practicallyin all aspectof physics.However,themostinfluentialwork ontheapplicationof

multigrid methodsto elliptic type problemsis, perhaps,that of Brandt (1977)who also

proposedthe useof local mode analysisto determinethe smoothingrate of multigrid

schemes.

In localmodeanalysis,themaximumeigenvalue(calledthesmoothingfactor)of aparticular

relaxationtechniquecomputedoveronlythehigh-frequencymodesisusedasameasureof

therelaxation'seffectivenessinamultigridschemesince,in thiscase,theroleof relaxationis

not to reducethe total error but to smoothenit out; i.e., remove the high-frequency

components.It is assumedthatthehigh-frequencymodeshaveshortwavelengththat are

spatiallydecoupledandthatall high-frequencywavesarecompletely"killed" on thefine

grid andarenotvisible to thecoarsegrids.This,however,is notalwaysthecasesincethe

inter-gridprocessesalsoinfluencetheconvergencerate.Brandt(1991)presentedtheoretical

considerationsfor includingthetransferprocessesin thelocalmodeanalysisinwhatiscalled

thebi-grid method.Also, sometheoreticalbackgroundisgivenby StubenandTrottenberg

(1982)onhow tocomputeamorerealisticamplificationfactorfor multigrid methodsbased

onthebi-grid analysis,wheresomeconvergencenormswerecomputedfor thePoissonand

Helmholzequations.

A number of works exist where the smoothing factor has been used to predict multigrid

performance in practice. However, the bi-grid analysis is becoming more attractive because

of its better accuracy and reliability. Van Asselt (1982) used the bi-grid analysis to determine
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the proper amount of artificial viscosity to add at the different levels of coarse grids in a

multigrid application. Mulder (1988, 1989) has also used the bi-grid method to construct an

effective semi-coarsening in a multigrid method that can solve the problem of strong

alignment which often occurs in convection problems. To select a relaxation scheme for a

multigrid method suitable for a parallel solution of a time-dependent problem, Horton and

Vandewall (1993) employed this technique using the heat equation as their model problem.

The cause of the poor multigrid convergence rate that is experienced in high-Reynolds

number flows (where the coarse grid corrections fail to approximate the fine grid problem

well enough for certain components) has also been investigated by Brandt and Yavneh

(1993) using the hi-grid method. In an effort to develop an effective multigrid algorithm for

Navier-Stokes solutions on an unstructured grid with O(N) complexity, Morano (1992),

and Morano and Dervieux (1993) have used the hi-grid analysis on a 1-D model scalar

convection equation with periodic boundary conditions. More recently, Ibraheem and

Demuren (1994a) also presented some convergence norms for the Burger's equation based

on bi-grid analysis.

Although implicit numerical schemes are becoming very popular, only few works exist to

show the effectiveness of multigrid methods in these schemes especially when approximate

factorization is introduced. Jameson and Yoon (1986) and Caughey (1988), for example,

used the smoothing factor and scalar convection equation as a model for the Euler equations

to investigate multigrid performance. Anderson et. al. (1988), and Demuren and Ibraheem

(1993) have also computed the smoothing factors on the actual coupled Euler equations for

some popular approximate factorizations. The latter work investigated the Navier-Stokes

equations as well. In order to compare the predictive capability of smoothing factors with the

spectral radius obtained from hi-grid analysis, Ibraheem and Demuren (1994b) considered

the full Euler and Navier-Stokes Equations solved with different numerical schemes. In this

work, amplification, smoothing and bi-grid factors for various implicit scheme solution

methods _or Euler and Navier-Stokes equations will be documented.
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1.4 Objectives

The objectives of this work are as follows:

(1) To formulate von-Neumann type of stability analysis for the l-D, 2-D and 3-D Euler

and Navier-Stokes equations using various numerical schemes. Three upwind-difference

based factorizations and two central-difference based factorizations will be selected for the

Euler equations. In the upwind factorizations, two popular flux-vector splitting methods,

one by Steger-Warming and the other by van Leer, will be used. The Lower and Upper (LU)

factorization, and the Beam-Warming ADI methods will be assumed as the base-line

algorithms for the central-difference schemes. Further, smoothing factors will be computed

to establish the effectiveness of the selected schemes for multigrid application.

(2) To present a procedure for utilizing the bi-grid amplification factor as a more accurate

tool for predicting practical multigrid performance in the above selected schemes. The

predictive capability of the bi-grid method will be established using several model

equations, including diffusion, convection and the Burger's equations; and several

time-stepping methods, such as Euler forward explicit scheme, Runge-Kutta multistage

scheme, a fully implicit scheme, and the semi-implicit scheme.

(3) To develop an efficient multigrid algorithm to solve steady state problems governed by

the 2-D and 3-D Navier-Stokes equations based on the results from the above analyses for

the Beam-Warming ADI method. The multigrid method is to be implemented in the two and

three dimensional versions of the Proteus computer code (Towne et. al 1990, 1992), and the

efficiency of the multigrid acceleration is to be demonstrated by application of the code to

several test problems.
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1.5 Report Outline

In Chap. 2, various approximate factorization methods are investigated for stability and their

amplification factors and smoothing factors are computed. Detailed discussion is provided

for the bi-grid analysis in Chap. 3. The bi-grid amplification factor for model problems as

well as for Euler and Navier-Stokes equations are then computed under various numerical

schemes. A brief description of the mathematical formulation of the Beam-Warming ADI

method is presented in Chap. 4 for the Navier-Stokes equations, and a steady multigrid

technique is introduced for this formulation to solve various steady state cases in Chap. 5.

Finally, future research directions are pointed out in Chap. 6.
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Chapter 2

SINGLE-GRID STABILITY ANALYSIS

In this chapter, the convergence characteristics of various approximate factorizations for the

3-D Euler and Navier-Stokes equations are examined using the von-Neumann stability

analysis method. Three upwind-difference based factorizations and several

central-difference based factorizations are considered for the Euler equations. In the upwind

factorizations, both the flux-vector splitting methods of Steger-Warming and van Leer are

considered. Analysis of the Navier-Stokes equations is performed only on the

Beam-Warming central-difference scheme. In each case, the smoothing factor that is often

used in predicting multigrid performance are also computed. Some issues central to stability

analysis are further clarified.

2.1 Theory and Analysis

The Fourier analysis is adopted to study the stability analysis of the coupled Euler and

Navier-Stokes equations. A discrete analog of these equations is formulated based on

various approximate factorizations in this section. The Euler equations are first analyzed

using upwind and LU factorizations. The ADI factorization is formulated for the

Navier-Stokes equations with the Euler equations as a degenerate case.

2.1.1 Upwind Approximate Factorizations for Euler Equations

The conservation form of the 3-D Euler equations in Cartesian coordinates can be written as:
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OQ OE OF OG
o--?-+ + = o (2.1)

where Q is the solution vector and E, F, G are the conserved inviscid fluxes:

Q = [(9, Qu, Qv, pw, Oeo]r

E= [pu, pu 2 + p, Ouv, Ouw, (peo + p)u] r

F= JoY, Ovu, ev 2 + p, Ovw, (Oeo + p)v] r

G = [Ow, Owu, Owv, Ow 2+p, (Oeo+p)w] r

(2.2)

If the Euler implicit scheme is used for time discretization, Eq. (2.1) can be written in the

following form of the augmented Newton's method (Fletcher, 1991):

[I + At(OxA" + OyBn + OzCn)ldQn = - At(OxE" + OyF_ + OzG") (2.3)

where the JacobiansA, B, C are0E/0Q, OF/OQ, OG/OQ, respectively. The expressions for

A, B, C and are given in Appendix A. In upwind formulations, these fluxes are split to match

the direction of the physical propagation of the solutions. Based on the direction of the

characteristics at each grid point, the fluxes are split into their forward and backward

contributions. Denoting the forward contribution with + and the backward with -, and

forward and backward difference operators with 6 + and 6 -, respectively, we can rewrite

Eq. (2.3) as

[I + At(Ox A+ + 6+A -) + At(OyB + + 6]B-) + At(OzC + + 6+C-)]_Q

= - At(O;-E + + 6x+E - + 67F + + 6_F- + 6;_G + + 6+G -) = - AtR n

(2.4)

The left hand side of the equation is usually approximated with first-order differences, but

the right hand side uses second-order differences to improve the overall accuracy of the

converged solution. However, even with first-order difference approximations of the
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implicit terms,theequationis computationallyexpensiveto solve.To reducethiscost,the

implicit operatoris factoredintoasequenceof easilyinvertibleterms.FollowingAnderson

et al. (1988)wewill considerthefollowing three factorizations:

[I + At(rx A+ + 6x+A-)][l + At(ryB + + 6y+B-)][I + At(rzC + + 6+C-)]AQ = - AtR"

(2.5)

[I + At(rxA + + 6yB + + 6z--C+)][I + At(6+A - + 6;B- + 6+C-)_dQ = - AtR" (2.6)

[I + At(6_-A + + 6+A - + 6z--C+)][I + At(ryB + + 6+B - + 6+C-)_dQ = -AtR" (2.7)

Equations (2.5), (2.6) and (2.7) shall be referred to as the spatial, eigenvalue and

combination factorizations, respectively. There are different ways of obtaining the split

fluxes expressed in the above equations but two popular methods viz.: Steger-Warming

(1980) flux-vector splitting, and van Leer (1982) flux-vector splitting, are considered in this

work. In the Steger-Warming case, the fluxes are obtained from the following

transformation:

A + = XAD_X A1, A- = XADXX ;1, etc. (2.8)

where D_ and DX are diagonal matrices whose elements are the positive and negative

eigenvalues of A, respectively, and the columns of X A are the eigenvectors of Jacobian A. The

terms E + and E- are obtained from E + = A+Q, E- = A-Qetc. Equation (2.8) gives

approximate values for A + and A -. The exact (true) values are obtained from (see Jespersen

and Pulliam, 1983):

A + = OE----_+A- = OE_..__ etc. (2.9)
OQ ' OQ '

In order to resolve the singular nature of the Steger-Warming flux-vector splitting at the

sonic speed, van Leer proposed the following splitting in Cartesian coordinates:
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E ± =±
O(u + a) 2

4a

D

1

(y- 1)u -4- 2a
Y

V

W

[(y- 1)u + 2a] 2

_ 2(y 2 - 1)

1 2
+ _(v + w E)

(2.10)

With similar forms for F +, the Jacobians A +, A - etc. are obtained from Eq. (2.9). The

analytical expressions for these can be obtained using a symbolic manipulator such as

Mathematica. In these expressions, van Leer (1982) ensured continuous differentiability of

the fluxes especially at the sonic transition and the stagnation point (Hirsh, 1990).

2.1.2 LU Approximate Factorization for the Euler Equations

This approach has become popular in recent times. It factors the implicit term of Eq. (2.3)

into two components such that each component is strictly either a lower (L) or an upper (U)

matrix as in the following equation:

[I + At(6xA l + 6yB, + 6z--C,)][I + At(6x+A2 + 6_'B2 + 6+C2)_dQ

= - At(OxE + 6yF + 6zG)
(2.11)

The Jacobian matrices are split to ensure diagonal dominance for each matrix inversion at

each grid point. For our numerical computation we have adopted the flux-vector splitting

devised by Jameson and Turkel (1981) viz.:

A1 (A + rA|) (A - rAl)= 2 ' A2 = 2 , etc. (2.12)

In the above, rA >-- max(12AI) etc. and J'A are the eigenvalues ofmatrixA, viz.: u+a, u-a, u, u,

U.
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The explicit terms are central differenced and it is necessary to damp the associated high

frequency waves and/or to correct the odd-even decouplings. In this study, the following

combination of second- and fourth-order explicit linear dissipations, D e , is employed.

According to C aughey (1988), and Yokota and C aughey (1988), the former term is necessary

for any spurious waves at the vicinity of shock while the latter ensures convergence to steady

state.

D e = (x2AtAXbxx- x4AtAx36xxxx)Q (2.13)

Noting that 6x_ = (1/A x)(6 + - 6x), the second-order term is split in a manner consistent

with the differencing of the Jacobians and is implemented implicitly as often done in

practice. Thus, with similar terms in the y and z directions, and their addition to Eq. (2.11) as

diagonal matrix coefficients, we can write

[I + At(axA l + ayn 1 + 6zC1) + x2dlt(ax + by + az--)]

X [I + At(bx+a2 + 6_B 2 + 6+C2) - x_dt(6x + + 6¢ + 6+)_a (2.14)

= -- Al(6x E q- 6yF q- 6za ) - x4/ll(/lX36xxx.x q- Ay36yyyy "q- hZ36zzzz)a

This factorization is similar to the eigenvalue factorization (see Eq. (2.6)) except that the

explicit terms are centrally differenced rather than upwinded, thus, requiring the addition of

dissipation. Also, the split fluxes of Jameson and Turkel which are less difficult to derive are

used to achieve diagonal dominance in this case. x 2 and ×4 are second- and fourth-order

coefficients of dissipation, and although x 2 is implemented implicitly, it is essentially an

explicit dissipation coefficient.

2.1.3 ADI Factorizations for Euler and Navier-Stokes Equations

The 3-D Navier-Stokes equations in Cartesian coordinates can be written as
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OQ + O(E- Ev) + O(F- Fv) + O(G - Gv) _ 0
Ot Ox Oy Oz

(2.15)

where E, F, G are as defined earlier, and Ev, Fv, Gv are the viscous fluxes given by

Ev = [0, _Iz(2Ux- Vy- Wz), ]Z(bly q- Vx), _(U z + Wx), T

_V(Uy + Vx) q- _tW(U z "q- Wx) + 2 lau(2Ux - Vy - Wz) "]- krx]

F,, = [0, _(Uy "4" Vx), 21Z(2Vy- Ux- Wz), lZ(Vz + Wy),

_t(Igy + Vx) q- _W(V z + Wy) "4" 2_V(2Vy -- Ux- W z) + kTy] T

a v = [0, _(w x q- ltz), _(v z + Wy), _t(2w z - Yy- Ux), T

+ +.v vz+ + - v,- +m]

(2.16)

In Eq. (2.16), T = p/[OCv(y - 1)], and p is as defined in Appendix A. Also, Stokes

hypothesis (2 = - (2/3)#) has been assumed. With Ev, Fv, Gv set to zero, we recover the

Euler equations (2.1). Using the Beam and Warming (1978) scheme, the viscous fluxes are

split directionally. Following the approach presented in Anderson et al. (1984) for 2-D

Navier-Stokes equations, analysis yields the following ADI approximate factorization for

the 3-D Navier-Stokes equations. Here, Euler time integration and constant fluid properties

are assumed.

II + At(drA - 6xxR)][l + At(dyB - 6yyS)][l + At(c_zC - 6zzY)]AQ =

- At[A6x - R6xx - Rl_yx - Rz6zx + B_y -- Sl(_:cy -

S6yy - S26zy '1- C(_ z - Yl6xz - Yz(_yz - Ydzz]Q

(2.17)

The analytical expression for the various Jacobians (from the viscous fluxes) that appear in

this equation are shown in Appendix B. The right-hand side resulted from linearization and

from assuming the flux Jacobians to be locally constant. To damp the high-frequency waves

that will arise due to central differencing, second-order implicit (D / = - E_ tAx6xx) and

fourth-order explicit (D e = - eedtAx3dxxxx) artificial dissipations are added as diagonal
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matrixcoefficientsin thenumericalexamples.Thus,withsimilardissipationsaddedin they

and z directions Eq. (2.17) becomes

[I + At(6xA - 6x_R - t_dxb=)][l + At(6yB - 6yyS -- EtdY6yy)]

X [I + At(6zC- OzzY- e_JZOzz)]AQ

= - A t[AOx - ROxx - RlOyx - RzOzx + BOy - SlOxy -- SOyy - S20zy

+ CO z - YIOXZ - Y2Oyz - YOzz + ee(Ax3Oxxxx + Zly3Oyyyy + Az3Ozzzz)]Q

(2.18)

The corresponding factorization for the Euler equations becomes transparent if the viscous

flux Jacobians R, R 1, R 2, S, S 1, S 2, Y, Y1, I12 are set to zero. Ei and Ce are second-

and fourth-order coefficients of dissipation just as u 2 and x 4 except that ei is an implicit

dissipation coefficient.

In the forgone analyses, different approximate factorizations that are widel3/used in practice

have been formulated for the 3-D Euler and Navier-Stokes equations. The convergence

characteristics of each of these are examined using the von-Neumann type Fourier analysis

methods.

2.1.4 von-Neumann Stability Analysis

Each of Eqs. (2.5)-(2.7), (2.14) and (2.18) can be expressed as

NAQ" = - L = - AtR" (2.19)

von-Neumann stability analysis is used on this system of linear Eq. (2.19) by letting the step

by step solution be characterized by

Qn = Uoj, neliO.eOOyelkO_ (2.20)
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where it is the amplification factor and {Ox, Oy, Oz } represent the modes in the x-, y- and

z-directions. Thus, Eq. (2.19) reduces to a complex generalized eigenvalue problem of the

form (Andersen et al., 1988):

A A A A A

Kx = 2Nx where K = N- L (2.21)

The Fourier symbols are derived for each of the factorizations shown in Eqs. (2.5)-(2.7),

(2.14) and (2.18). For example, for the Euler Equations based on the Beam-Warming

scheme (from Eq. (2.18), these two Fourier symbols are expressed as follows:

 t( ,sin Oy,+ isin2 t]+27

 t( ,sin Oz,+ isin2 )]+Wzz

(2.22)

_,(O 1) = -_xl(Asin(Ox) + Bsin(0y)+ Csin(Oz) ) +

16,dtee(sin40X. 40v -_)d x T +sm _ + sin 4 (2.23)

In the preceding equations, t91 = {0x, Oy, Oz}. The Fourier symbols corresponding to the

other approximate factorizations are documented in Demuren and Ibraheem (1992).

2.2 Solution Procedure

The convergence characteristics for solution algorithms based on each of the factorizations

discussed are investigated by solving the generalized eigenvalue problem (2.21) over a fixed

number of Fourier modes. Sixteen modes are selected, in the range - er/2 _ 691 _ _r/2,

and over these modes the maximum eigenvalue (itmax), the average eigenvalue (itavg) and the

smoothing factor (it,) are computed. The smoothing factor is computed to show the

effectiveness of the selected scheme as a relaxation operator in a multigrid implementation.
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This is calculated from 2t_= max(121) for the high frequency modes in the range

_/4 < IOll < _/2. For the analyses, uniform flow is assumed with M_ = 0.8, zero yaw

and angle of attack and ), = 1 . 4. Further, the grid spacing is assumed to be uniform in all

directions. The time step and Reynolds number are calculated from:

At = CFL

[_ ,,_, _x._x2 ,] (2.24)ax + _-_y+ _ + c + _ + -_z2

0Wl(v/Ax 2 + Ay 2 + Az 2)
Re = (2.25)

kt

As a further test case, the quasi-one-dimensional Euler equations are solved with a similar

formulation as the 3-D upwind spatial factorization, with uniform conditions of

M= = 0.5, zero yaw and angle of attack and O = 1 . 0, chosen to enable comparison with

Jespersen and Pulliam's results (1983). In this case, the computed parameters are the

maximum eigenvalue (2max), the L2-norm of the eigenvalue (12) and the eigenvalue at

Ox = _r, (2_). A batch file used to submit a typical 3-D test case is shown in Appendix D.

2.3 Results and Discussion

Computed values of the maximum eigenvalue (_max), the average eigenvalue (2avg) and the

smoothing factor ().u) for the spatial, eigenvalue and combination factorizations based on the

Steger and Warming flux-vector splitting are shown in Figs. 2.1(a), 2.1(b) and 2.1(c),

respectively. Both the eigenvalue and the combination factorizations are unconditionally

stable for all CFL numbers. The spatial factorization is stable only for CFL numbers below

five. The maximum eigenvalue for each of the spatial, eigenvalue and combination

factorizations is minimized at CFL numbers of three, eight and seven, respectively.

Corresponding results obtained for 2-D case (not shown) indicate that the spatial and

eigenvalue factorizations are unconditionally stable and have lower _-max than the 3-D case,
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for all CFL numbers.The correspondingminimum value of areminimized at a CFL

numbersof eightandten,respectively.The1-Dcaseisalsostablefor all CFLnumberswith

themaximumeigenvalueminimizedataCFLnumberof 11,for bothspatialandeigenvalue

factorizations(Table2.1).

Figures2.1(d-f) showtheconvergencecharacteristicsof eachof thefactorizationsbasedon

thevanLeerflux-vector splitting.Theseagreeverywell with thatof Andersonetal. (1988).

Except for thespatialfactorization,all theschemesareunconditionallystablefor all CFL

numbers.Thespatialfactorizationis stableonly for CFL numberbelow 14.Themaximum

eigenvaluesforthespatial,eigenvalueandcombinationfactorizationsareminimizedatCFL

numbersof seven,fourandseven,respectively.Fromthe,;tu curve, it appears that the spatial

factorization with the Steger and Wanning method has poorer smoothing properties

compared with the van Leer spatial factorization. Based on linear analysis, there is also a

smaller range of CFL numbers over which it is stable. The spatial factorization and the

eigenvalue factorization of the 2-D case are found to be unconditionally stable with

maximum eigenvalue minimized atCFL numbers of about nine and six, respectively. Results

for the 1-D case are almost identical to those of the Steger and Warming analysis, with

maximum eigenvalues minimized at CFL numbers of 11 and 19, respectively.

In the computations presented thus far, approximate Jacobians derived from a time

linearization of the Euler equations have been employed in the Steger and Warming method

on both the implicit and explicit sides. The effect of using the exact Jacobians in the stability

analysis was investigated with the 1-D Euler equations using uniform conditions of

M o_ = 0.5 and (_ = 1.0. The results are compared in Figs. 2.2(a) and 2.2(b),

respectively. In both cases, first-order differencing was used on the implicit side (lhs) and

second-order differencing on the explicit side (rhs), as in previous computations. From these

figures, it can be observed that the results (as reflected by the variation of '_-max, 12, ,_t with

CFL) are similar. This shows that the use of an approximate Jacobians does not place a
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restrictionon thestability.This isat variancewith theconclusionof JespersenandPulliam

(1983). Restrictionon the stability will result if the Jacobiansare "mixed" such that

approximateJacobiansareusedon theimplicit sideandtheexactJacobianson theexplicit

side. In this case,Fig. 2.2(c)showsthatthestability is restrictedto CFL numbersbelow

unity. On theotherhand,if theJacobiansaremixedin the reverseorder(i.e., with exact

Jacobiansontheimplicit sideandapproximateJacobiansontheexplicitside),theresults(see

Fig. 2.2(d))arenotsignificantlyaffected.Further,from Figs.2.3(a-d),wherewehaveused

second-orderdifferencingonbothsides,similarconclusionscanbedrawn.

All computationshavebeenbasedonuniformflow conditions.To ascertainthesuitabilityof

using suchuniform flow field assumptionsin the stability analysis,computationswere

carriedouton twonon-uniformflow fieldswith thequasi-l-D Eulerequationsusing local

modeanalysis.Thesecorrespondto supersonicandtransonicflows inadivergingductwith

steady-statesolutions,shownin Figs.2.4(a)and2.4(b), respectively.Thevon-Neumann

methodisappliedateachpoint in theflow field therebyaccountingfor thevariationin flow

properties.The stability results for the supersonicand transoniccaseswith first-order

differencingon the implicit sideand second-orderdifferencingon the explicit side are

shownin Figs.2.4(c)and2.4(d),respectively.Theseresultsfollow asimilar trendasthose

obtainedtbr the1-D Eulerequationswith uniformflow properties,exceptthatinstability is

now predictedfor lowerCFL numbers.Boundaryconditionswereimplementedexplicitly

andmighthavecontributedto thisinstability.Theuseof localmodeanalysishere,issimilar

to theuseof thetotalmatrixmethodapproachof JespersenandPulliam(1983),exceptthat

theformer is easierto computebecauseit involvesthesolutionof only a3 X 3 eigenvalue

problem.

Figures2.5(a-c)showtheconvergencecharacteristicsof the3-D Eulerequationsusingthe

LU approximatefactorizationwitfi centraldifferenceapproximationsandvariouslevelsof

second- and fourth-order artificial viscosities, x2and x4. Without the addition of
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second-orderdissipation(i.e.,942 = 0), the coefficient _4 = 0.4 yields the optimal results

(see Fig. 2.5(a)). Appropriate combinations of x2and x 4 (especially when 944 >-_ 942)

considerably reduce the amplification factor (see Fig. 2.5(b) as compared with Fig. 2.5(c)),

The amplification factor is minimized in each case at a CFL of about five. Similar trends

were observed in 1-D and 2-D cases.

In Figs. 2.6(a-f), the convergence characteristics for the full 3-D Naiver-Stokes equations

using the Beam and Warming (ADI) central difference scheme as the baseline solution

algorithm are shown for different Reynolds numbers and levels of artificial dissipation. For

the Reynolds number of 100 (Fig. 2.6(a)) and with no dissipation added, the scheme is stable

for CFL number below 18. However, with artificial dissipation coefficients of Ee = 0 . 5

and e i = 1 . 0 (Fig. 2.6(b)), the stability is restricted to a lower CFL number of 10, but with

better smoothing properties. Optimal dissipation coefficients of E i = 1.0 and e i = 2.0

(Fig. 2.6(c)), are found to improve the stability to a CFL of about 18 while maintaining good

smoothing properties. The maximum eigenvalue is minimized at a CFL number of about

four for this optimal dissipation. Both I-D and 2-D cases are unconditionally stable for all

levels of dissipation. For g i = 1 . 0 and Ei = 2.0, their maximum eigenvalues are both

minimized at about CFL numbers of 24 and 11, respectively. The results are mostly similar at

the higher Reynolds number, except for the case without artificial dissipation. Hence, the

stability results are not significantly affected by Reynolds number. The stability results for

the 3-D Euler equations with the Beam and Warming (ADI) central difference scheme are

similar to those obtained for the full Navier-Stokes equations at the Reynolds number of

10 6 . Generally, the addition of dissipation reduces the amplification factor and the

smoothing factor at lower CFL numbers. Optimal smoothing is usually at a CFL number

close to unity.
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The aboveresultsaresummarizedin Table2.1.In theTable,2mstandsfor theminimum

amplificationfactor, CFLm for the corresponding CFL number, CFL l the maximum CFL

number for stability and CFLu is the CFL number at which 2u is minimized.
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Fig. 2.2: 1-D Euler Equations using Steger-Warming schemes, first-

order lhs, second-order rhs. (a)-(d) Convergence Characteristics.
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2.4 Concluding Remarks

The stability of some approximate factorization schemes for the solution of the 3-D Euler

equations and Navier-Stokes equations have been studied. For the Euler equations, the

Steger and Warming, and van Leer flux-vector splittings were used with three different

upwind factorizations namely: spatial, eigenvalue and combination factorizations. For both

flux-vector splittings, the eigenvalue and combination factorizations are unconditionally

stable, but the spatial factorization is only conditionally stable for CFL numbers below five

for the Steger and Warming scheme, and 14 for the van Leer scheme. Moreover, the

amplification factor (J-max) is minimized for the Steger and Warming scheme at CFL

numbers of three, seven, and eight respectively, and for the van Leer scheme at seven, four,

and seven, for spatial, eigenvalue and combination factorizations, respectively. Each of the

approximate factorization methods has good smoothing properties for the van Leer

flux-vector splitting, while for the Steger and Warming splitting, the smoothing factors are

comparatively worse. Therefore, the van Leer splitting will be preferable for multigrid

implementation. The Euler equations have also been analyzed for stability using the LU

approximate factorization with central differences and various levels of artificial dissipation.

It was found to be unconditionally stable in all dimensions with the maximum eigenvalue

minimized at a CFL number of about three. Contrary to the conclusion drawn by Jespersen

and Pulliam (1983) that the use of approximate Jacobians places restriction on the stability, it

is shown, after careful investigation, that if they are used on both the implicit and the explicit

sides, the stability results are comparable to the case where the exact Jacobians are used. The

von-Neumann analysis method was also employed in performing local mode analysis for

actual (supersonic and transonic) flow fields of a quasi 1-D problem to show the suitability

of using uniform flow field in the stability analysis. Stability results for the 3-D Euler and

Navier-Stokes equations solved with the Beam and Warming (ADI) central scheme with

various levels of artificial dissipation (and at different Reynolds number for the latter) have
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beenpresented.It wasobservedthatthestability is not significantlyaffectedby Reynolds

numbersandthatadditionof dissipationreducestheamplificationfactorandthesmoothing

factorat lowerCFL numbers.
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Chapter 3

BI-GRID STABILITY ANALYSIS

The objective of this chapter is to present a procedure for utilizing the bi-grid amplification

factor as a more effective tool for predicting practical multigrid performance in a range of

numerical methods. Bi-grid analysis, based on the von-Neumann type method, is first

presented for the 1-D convection and diffusion model problems, and the linearized Burger's

equation. Numerical results from practical multigrid solution of these problems are

compared to both predictions from bi-grid analysis and smoothing factors derived from the

more usual single grid analysis. Both analyses and practical computations are based on the

following different time-stepping methods: the Euler forward explicit scheme, the

Runge-Kutta multistage scheme, a fully implicit scheme, and the semi-implicit scheme. The

influence of the Peclet number on the convergence characteristics of the different schemes is

investigated using the Burger's equation. Finally, for more practical situations, multigrid

performance of various approximate factorizations for the 3-D Euler and Navier-Stokes

equations are examined using the bi-grid stability analysis. For the Euler equations, bi-grid

analysis is presented for three upwind difference-based factorizations and several central

difference-based factorizations. In the upwind factorizations, both the flux-vector splitting

methods of Steger-Warming and van Leer are considered. The central-differenced schemes

include the Lower and Upper (LU) and ADI factorizations. The time-stepping algorithm for

the Navier-Stokes equations is based on the Beam-Warming central difference scheme only.

Finally, effects of grid aspect ratio and flow skewness are examined.
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3.1 Bi-grid Analysis

Consider a given differential problem which can be written as

L{u(x)} =f(x), for x in 12 (3.1)

where L is a linear operator. A typical 2-level multigrid cycle solution to this problem will

involve the following steps:

(1) pre-relaxation on a fine grid using any technique $1, v 1 times

(2) computation of the defect R

(3) restriction of the defect to the coarser grid

(4) exact solution of the error equation on the coarse grid

(5) prolongation of the error onto and the correction on the fine grid

(6) post-relaxation on the fine grid using any technique $2, v 2 times

These can be represented for any intermediate solution w, by using the usual operators as

follows:

1

(1) w"+_ = _'w"
1

(2) R = f- Lh wn+5

(3) i1Ih R

(4) Vn= LHI(IHR)

(5) IhHVH + W_+½

(6) w" +1 = S_22(IhvH + w n +½)

(3.2)

Combining these steps, we can write

wn+l v 2 h -1 H i n= S 2 [IHL H I h (f -- LhS_1 w ) + S_l'w n] (3.3)

The steady-state solution (u) is not changed by the coarse grid correction scheme; thus

'1,tl . ?11

u n+' = SVz2[IhHLH'I_(f - Lh_'U n) + S 1 u J (3.4)

Subtracting (2) from (1) and noting that e n+l = u n+l - w "+1 gives

37



en+l = _2:(i_ h -1 n ' nI_L n I h Lh) _ e

= S_22K,.Wll'e n

= Me n

(3.5)

where K = I- IhLnllnLh

M = S_22(I - IhnLn 11HLh)_11' (3.6)

M is the bi-grid amplification matrix and K is the coarse grid correction matrix. It can be

shown (Stuben and Trottenberg, 1982) that when linear operators are used for the restriction,

I H, and the prolongation, I h, transfer processes, the coarse grid correction matrix is not a

convergent iteration matrix, i.e.,

Q(K) 0(I h - 1 H= --I_L H IhLh) > 1 (3.7)

Hence, the fine grid smoothing steps S1, and $2 are important for a convergent scheme. The

spectral radius of the bi-grid amplification matrix (_t, max_bg ) and its 12 n°nn can be used to

predict the performance of a multigrid method. While the spectral radius measures the

asymptotic convergence rate of the multigrid method, the 12 norm measures the actual error

reduction per iteration. _max_bg is defined as follows:

2max_bg = max{Q[_(O)] } (3.8)

A

M(O) is the Fourier representation of the matrix M. A brief comment about O will be in

order. Due to the aliasing process, low-frequency modes will couple with the coarse grid

Fourier modes and, thus, for any El 1 = {Ox, Oy, Oz} such that - at/2 <_ Ox, Oy, Oz <_ _/2,

there exists a corresponding set of harmonics up to an integer multiple of 2,ft. For l-D, 2-D

and 3-D problems, we define ® as the following set •
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1-D

2-D

3-D

0 = {(Ox),(Ox + n)}

0 = {(Ox, Oy),(Ox, Oy "at" .Tg),(Ox "t- ,Tg, Oy),(Ox "4" .7_,Oy 4- 3T)} (3.9)

0 = {(Ox, Oy, Oz),(Ox, Oy, O z 4- ,7"t2),(Ox, Oy 4- ,Tg, Oz),(Ox, Oy 4- 2"g,O z -'b ,7"g),

(Ox "t- .7"(.,Oy, Oz),(O x 4- ,Tg, Oy, Oz "I- .Tt), (0x -4- Y'f, Oy 4- .7"t, Oz) ,

(Ox+
Or more generally,

d-D 0 = {OI,o2, O 3...... 02a}
(3.10)

(where d is the dimensionality of the space, and O 1, 02 ..... O 2a are permuted in a similar

manner with the -t- signs chosen such that the harmonics lie in the high-frequency range).

Hence, based on the O components and on the number of degrees of freedom of the problem,

A

q, M(O) is a 2aq x 2dq matrix. Thus, it is a 2x2 matrix for a I-D scalar problem and 40x40

matrix for the Euler or Navier-Stokes equations in 3-D. The Fourier representation for the

corresponding operators viz.: smoothing factor, fine grid problem, interpolation, restriction

and the coarse grid problem can be constructed as follows (Brandt, 1991):

= (_2, _,)= diag[_(01) ' 3(02 ) ..... _(Oze)]

Z h = diag[L(01), L(O 2) ...... _(O2_)]

_H = [_H(o1), )/-/(02 ) ...... )H(o2a)]

^ t( )L n = 201

2aq X 2aq

2aq X 2aq

2aq X q

q X 2aq

qXq

(3.11)

The difference operator, LH(201), on the coarse grid is only qxq since the coarse grid

problem is solved exactly.

A A

S and L depend on the choice of the smoother and the governing equations, respectively. The

transfer processes, however, are less problem-dependent. Following Brandt (1991), the

Fourier symbol of the prolongation operator based on an Ith-order polynomial is given by
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d
^h m

IH(O )la = 6kl 1-I lflI (COS _m)
i=l

m = 1,2 a (3.12)

where lf12(_ ) = (1 + _)/2, _04(_) = (2 + 3_ - _2)/4, etc. are the 2nd and 4th order

interpolation functions, and 6/a is the Kronecker delta. We restricted our analysis to the 2nd

order case, since it is more commonly used. The restriction operator is expressed as

(3.13)

T * in the above equation represents the conjugate transpose. The restriction operator is often

the adjoint of the prolongation operator in practice. In this study, the corresponding full

weighting is used for the restriction operation for the Euler and Navier-Stokes equations,

while simple injection is employed for the model problems. In the latter case, the Fourier

symbol for the restriction operator is simply unity. A description of how the Fourier

A

representation M(O) can be constructed is given later for certain problems.

3.2 Model Equations

The model equations used in the present study are the conservation equations for the

convection of a scalar, the diffusion of a scalar, and the linearized Burger's equation which is

essentially a convection-diffusion equation. Each of these equations is integrated in time

using (i) the Euler forward-explicit scheme, (ii) a Runge-Kutta multistage scheme, (iii) a

fully implicit scheme and (iv) a semi-implicit scheme.

The model equations for convection, diffusion, and the linear Burger's equation can be

expressed as:

(convection-diffusion)

convection: ut + CUx = 0

diffusion: ut - VUx.x = 0

Burger's: ut + UoUx = VUxx

(3.14)
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In theBurger'sequation, Uo = constant

the following non-dimensional form:

is assumed in our analysis. Thus, it can be put in

ut + ux = -_e Uxx (3.15)

where Pe in the above equation is the Peclet number defined as follows:

uoD
Pe- r (3.16)

(D is an appropriate length scale)

(i) Euler forward-explicit scheme

The Euler explicit method can be applied to the above equations to yield the following

general discrete form:

u_ +1 = u'] - dtR n (3.17)

(3.18)

- 2u7 + u,"_1)

where R n represents the residual expressed as follows:

convection: R n -- ¢ (U n -- U n_ 1)
Ax

diffusion: Rn= v (u n
_2" i+1 -- 2un + un-1 )

Burger's: R n _._x (Un _ un_l) Ax2pel (ui+n I

Spatial discretization in the above formulations is based on first-order upwind differences

for convection, second-order central differences for diffusion, and the corresponding

combination in the Burger's equation. First-order upwind differencing of the convective

flux introduces inaccuracy due to too much numerical diffusion which may be of the same

order of the natural diffusion in the Burger's equation. If second-order central differencing is

used for the convective flux, a second-order accurate scheme can be obtained, but with

severe limitations on the Peclet number due to dispersion errors. Although the addition of

artificial viscosity could dampen the high-frequency oscillations at high Peclet numbers, it is

highly problem dependent. A better approach to achieve a second-order accuracy while
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sustainingasmoothsolutionat thevicinity of ashockor high gradientsis to discretizethe

convectiveflux usinghigher-orderupwindschemes,preferablyin conjunctionwith some

type of flux limiter. Hence,with a third-order discretizationof the convectiveflux, a

second-orderaccurateschemefor theBurger'sequationcanbeobtainedwith R n given by

R n _ 1 n n 1.__.(un _ 3u n + 3un_l n2Z_X (ui+I -- Ui-1) -- 6ZIX i+1 -- Ui-2)
(3.19)

1 n n

dx2pe(Ui+l - 2u n + ui_ 1)

(ii) Runge-Kutta Multistage scheme

With each of the above schemes integrated in time using the Euler forward explicit method,

the time step was limited to a small range by stability considerations, thus making it

inefficient for steady-state computations. A Runge-Kutta (RK) method was introduced by

Jameson et. al. (1981) to permit larger time steps to be taken. For an m-stage scheme, the

time integration can be written as follows:

u o = u n

k
U i =- U ° -- akZltR k-1

.7 ÷1 = u?
k = 1,m (3.20)

Note that with m = 1, the RK scheme reduces to the Euler forward explicit scheme and

hence is sometime called RK 1. Coefficients a k are optimized such that larger time steps can

be used for faster convergence.

Three different sets of coefficients for a 4-stage Runge-Kutta scheme are investigated in this

study, in line with the earlier work of Morano (1992). These are the standard coefficients

(RK4-S, a 1 =. 25,a 2 =. 3333,a 3 =. 5,a 4 = 1), and the optimized coefficients of

Lallemand (RK4-L, a 1 =. ll,a 2 =. 2766,a 3 =. 5,a 4 = 1) and van Leer (RK4-VL,

a 1 =. 0833,a 2 =. 2069, a 3 =. 4265,a 4 = 1 ).
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(iii) Implicit scheme

An implicit time integration scheme in delta form can easily be formulated for each of our

model problems. For example, the corresponding implicit formulation for the Burger's

equation with first-order accuracy is written as follows:

1 (un+l _ 2u n + un_l)
AxZPe

An n = un+ 1 -- U n

(3.21)

The quantityfl in the preceding formulation is called the implicitness factor, fl = 1 . 0 gives

a fully implicit scheme.

(iv) Semi-implicit scheme

If fl = 0.5 in equation (3.21) above we have a semi-implicit scheme. This reduces to the

Crank-Nicolson scheme if the overall spatial differencing is second--order accurate.

3.2.1 Fourier Symbols

A

For illustration, the bi-grid amplification matrix M(O) is constructed for the convection

problem using the Euler-forward explicit scheme for the relaxation.

Consider the discrete form of the operator L and let the step-by-step solution be

characterized by Fourier modes (with periodic boundary conditions) as

un= Uo2neOJi (3.22)

A

Then each of the operators that forms the matrix M(O) becomes:
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where

_(om) = (1- A_)+ -_x[COS(O)m)-Isin(6)m)]

^ _ _xLh(O ) = -- [1 -- cos(O _) + lsin(Om)]

?hi_l(Om) : 1 [ 1 -_- COS(Ore)]

_I/(om) = 1 for injection

L/./ = 2_x[1- cos(201) + Isin(201)]

01 = Ox and 02 = Ox + zl

m=l,2

(3.23)

A

Thus, from Eq. (3.8), M(O) can be expressed as:

_(o) L° s(°?.l Lx_, K==Lo s(o_)l

K,, = 1 - I_(O')I_(O')£h(O')/LH

K,z = - I_n(O')_(OZ)Lh(02)/l_.

x=,= - 1_og_(o')Lh(o')/I).

/c22= 1- i_(o2)i_(o2)L(o2)/£.

*'2

(3.24)

A

Note that L H is evaluated only at the fundamental frequency {20x, 20y, 20z }, hence it is 1x 1.

The result obtained above is similar to that derived by Morano (1992), although our

presentation is more general and is more easily extended to multi-dimensions.

3.2.2 Multigrid Implementation

A simple two-level multigrid (V cycle) method was implemented to test the relative

accuracy of the bi-grid amplification factor and the smoothing factor in predicting multigrid

performance. The two-level algorithm consists of the steps given in Sec. 2 and is recursively

expressible as follows:
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Proc Multigrid (u n, u n + 1, R n, k)

{if (k = 1)
eimer u n+l = LH1R n

or u n+l = S_u n

else (3.25)
U n+l _ Slu n

Rn,_-- IH(R n - Lu n)

Multigrid (0, UH, R n, k - 1)

un+ l _.. un+ l + IhuH

endif }

In the Eq. (3.25), L and S stand for the discrete operator and relaxation scheme

corresponding to each of the model equations and numerical schemes discussed in previous

sections. For this two-level V cycle multigrid implementation, the exact solution of the

residual equation is employed. Only one pre-relaxation with no post-relaxation is

performed on the fine grid.

3.2.3 Local Relaxation

Bi-grid analysis is exact for problems with periodic boundary conditions since it is based on

the Fourier method. However, the asymptotic convergence rate for certain multigrid

solutions deteriorates from the bi-grid prediction due to singularities such as a discontinuity

in the material and/or solutions, and also due to the type and coefficients of the boundary

conditions. Poor multigrid performance results since such singularities lead to too large a

correction from the coarse grids in the localized region. To improve the performance of a

multigrid solution, further relaxation can be performed on the fine grid in the region of the

singularities after applying the coarse grid correction. This local relaxation is, in fact, an

extra post-relaxation, but is confined to only certain nodal points and is carried out only a

few number of times. The extra computational work is negligible if only a few partial sweeps

is involved. The convection dominated problems subject to Dirichlet boundary conditions

that are considered here undergo high changes in the gradients in order to satisfy the exit

boundary conditions. Therefore, multigrid performance in these problems deviates from the

results predicted by the bi-grid analysis. However, a few passes on the fine grid over the
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boundary conditions and over the interior equation in some small neighborhood of the

boundary (about three nodal points at the exit) is found sufficient to improve multigfid

performance to the exact value predicted by bi-gfid analysis.

3.2.4 Numerical Experiments

The bi-grid amplification factor ( _l,max_bg), the smoothing factor ( _/__sg ) and the practical

asymptotic convergence rate ( Qmg ) of the multigrid scheme were obtained for the

following test problems:

(1) The convection problem with periodic boundary conditions, viz.:

u(O,t) = u(1,t) ; u(x,O) = sin2,rrx (3.26)

(2) The convection problem with Dirichlet boundary conditions, viz.:

u(0, t) = 1 , u(l,t) = 0 fort>O ; u(x, 0) = sin2_x (3.27)

(3) The diffusion problem with similar Dirichlet boundary conditions as in (2) above

(4) The Burger's equation with similar Dirichlet boundary conditions as in (2) above.

The bi-grid amplification factor is obtained from Eq. (3.8) and the smoothing factor is

obtained from the usual single grid amplification factor over the high frequency range

{^ }x/2 _< O 1 _< Jr as 2__sg = max 0[S(01)] . In each case, sixteen Fourier modes are

selected, and the associated eigenvalues are solved for using linear algebra routines such as

found in the IMSL library. The asymptotic convergence rate of the multigrid experiments, on

the other hand, is computed from

1

Rn 1 (3.28)

wherell R"I II and IIR"2 II are the 12 norm of the residuals at time levels nl and n2,

respectively.
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Thepseudotimed t to advance the convection and the diffusion problems to steady state is

computed from CFL = A--Xt and d- At respectively. The CFL number is the
Ax Pedx 2'

Courant-Friedrichs-Lewy number, and d is the diffusion number. For the Burger's equation,

A t is computed from:

At = min(aAx , aAx2pe) (3.29)

where a is an appropriate parameter chosen to reduce to the diffusion number d at low Pe

numbers and to reduced to the CFL number at high Pe numbers. This choice ensures that the

appropriate time step is used in each flow regime. Ax is computed from D/20. Preliminary

tests showed that the same results are obtained with 40 or 80 points.

The exact steady-state solution for the Burger's equation, subject to the boundary condition

type discussed above, is given by

u = u(O, t) 1 - exp( (3.30)

It is valid for all range of Pe considered in this study.

3.2.5 Results for the Model Equations

Figures 3.1 and 3.2 show results of the analyses of the 1-D convection equation using the

Euler forward explicit scheme. The model problem of Fig. 3.1 has periodic boundary

conditions, whereas that of Fig. 3.2 has Dirichlet boundary conditions. The hi-grid analysis

gives perfect prediction of practical multigrid performance in the former, whereas the

smoothing factors from the single grid analysis are much too high. Both methods of analysis

ignore boundary effects, so the same predictions are obtained in Figs. 3.1 and 3.2, and the

analyses predictions are strictly correct only for problems with periodic boundary

conditions. This is confirmed in Fig. 3.2(b) where the asymptotic multigrid convergence rate

is now much worse than predicted by the bi-grid analysis. The reason for the degradation of

the multigrid performance is the singularity which appears near the exit in Fig. 3.2(a). This
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degradation in performance could be cured with a few local relaxation sweeps (Brandt and

Yavneh, 1993), as shown in Fig. 3.2(c). Each sweep had marginal computational cost and

five sweeps were sufficient to bring the multigrid performance for the Dirichlet problem in

line with that with periodic boundary conditions and the prediction of the bi-grid analysis.

Clearly the Euler forward explicit scheme does not have good convergence properties except

for CFL numbers close to 0.5, and it is divergent for CFL numbers greater than 1. Better

convergence properties are achieved with Runge-Kutta (RK) schemes. Three 4-stage RK

schemes were analyzed, and the results are shown in Fig. 3.3 for the 1-D convection problem

with periodic boundary conditions. With optimized coefficients Fig. 3.3(c), convergence

could be obtained for CFL numbers up to three. Further, bi-grid amplification factors below

0.4 are obtained for the range of CFL numbers from 0.5 to 2.5. There is also perfect

agreement between the results of the bi-grid analysis and the practical multigrid

convergence rates. Similar multigrid results were obtained by Morano (1992). Figure 3.4

shows the result for the Dirichlet boundary conditions. In this case the multigrid convergence

rates at higher CFL numbers are much better than predicted by either method. Clearly, the

boundary effects are stronger with the RK scheme and there is no simple way to account for

them in the analyses. Figure 3.5 shows results for a fully implicit scheme and for the

semi-implicit Crank-Nicolson scheme, for the 1-D convection equation. Although both

schemes are stable for the whole range of CFL numbers, the Crank-Nicolson scheme suffers

from very poor convergence rate at high CFL numbers.

Results for the 1-D diffusion equation are presented in Figs. 3.6-3.8. Dirichlet boundary

conditions are applied throughout, and the steady state-solution is shown in Fig. 3.6(a). In

each case, the bi-grid analysis gives perfect agreement with the multigrid convergence rate

whereas the smoothing rate obtained from the single grid analysis is consistently too

optimistic. On the whole, the predicted convergence rates for each method are similar to the

corresponding one obtained from the convection equation, if the diffusion number, d, is

replaced by the CFL number in the latter. Clearly, if the goal is to achieve rapid convergence
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to the steadystate,the fully implicit schemewith high d or CFL number is the obvious

choice.

The linearized Burger's equation represents a mixed convection-diffusion problem. The

whole range of model type, from pure diffusion to pure convection, can be obtained simply

by varying the Peclet number from a very small value to a very large value. Computed results

for four values of Pe (10 -4, 20, 100, 106) are presented in Figs. 3.9-3.12, for the various

discretization schemes considered here. The exact solution at the steady state is shown in Fig.

3.9(a), for the Dirichlet boundary conditions u(0,t) = 1, u(1,t) = 0. For high values of Pe, there

is a singularity near x=l. As explained previously in Sec. 3.2.3 local relaxation is performed

to reduce the adverse effect of this singularity on the overall multigrid convergence rate. The

results for the first- and second-order Euler time explicit schemes are presented in Figs. 3.9

and 3.10. In each case the bi-grid analysis gives quite good prediction of the multigrid

convergence rate. On the other hand, single-grid analysis gives too optimistic estimates at

low Pe and too pessimistic estimates at high Pe. The second-order scheme shows much

poorer convergence rates, especially at high Pe. The results for the fully-implicit and

semi-implicit schemes are presented in Figs. 3.11 and 3.12. The superiority of the

fully-implicit scheme is confirmed, especially for high Pe flows. For a (or CFL number)

greater than ten, it is close to a direct solver with it ---- 0. In these cases too, the bi-grid

analysis agrees quite well with the practical multigrid convergence rate, except

near a = 1 in the semi-implicit scheme at high Pe. Because of the limited range of a

where the convergence rate is much less that unity, the semi-implicit Crank-Nicolson

scheme is not a viable method for obtaining steady solutions for the model problem. If the

main interest is rapid convergence to steady state, then the fully-implicit scheme at high

values of a (or CFL number) will be optimum.
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3.3 Euler and Navier-Stokes Equations

Presently bi-grid stability analysis has been presented for typical explicit and implicit

solution methods for model problems which range from the diffusion equation to the

convection equation and including the convection-diffusion equation at different Peclet

numbers. For large scale practical computations, interest is really in solving the system of

Euler or Navier-Stokes equations. In the following sections, the bi-grid stability analysis of

fully-implicit schemes for the Euler and Navier-Stokes equations are examined under

various approximate factorization methods.

As formulated previously in Chap. 2, the coupled Euler and Navier-Stokes equations based

on the different time-stepping approximate factorizations are

[I + At(dxA + + dx+A-)][I + At(dyB + + 6y+B-)][I + At(6z C+ + 6+C-)]AQ = - AtR"

(3.31)

[I + At(6;-A + + d;-B + + dz-C+)][l + At(dx+A - + 6;-B- + 6z+C-)[dQ = -AtR"(3.32)

[I + At(dxA + + dx+A - + bz--C+)][l + At(dyB + + d_B- + dz+C-)_dQ = -AtR"(3.33)

where R" = dxE + + dx+E - + O_-F + + dy+F - + 6z-G + + Oz+G - (3.34)

[I + At(dxA 1 + 6_7B 1 + 62C l) + uzAt(dx + 6y + 6z-)]

X [I + At(r_x+A2 + 6+B 2 + dz+C2)- x2,dt(dx + + _- + _+)_dQ (3.35)

= - At(6xe + 6yF + 6=G)- u4At(Ax36_m + Zy3C_yyyy"4- ZIZ3(_zzzz)Q

[I + At(dxA - dx._R - t#lx3_)][l + At(dyB - d,S - e_dydyy)]

X [I + At(dzC - 6zzY- eedzbzz)_dQ

= - At[Adx - Rtxx - Rldyx - R2dzx + B_y - Sl_)xy - S¢_yy - S26zy

+ Cdz - Y_dr: - Y2d_z - Ydzz + ee(AX3C_xxxx+ Ay3_yyyy + AZ36zzzz)]Q

(3.36)
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Equations(3.31),(3.32)and(3.33)aretheupwindschemesthatarereferredto asthespatial,

eigenvalueand combinationfactorizations,respectively,in Chap. 2. The flux-vector

splitting methodsof Steger-Warming(1980) and van Leer (1982) are also assumed.

Equation(3.35)is theLowerandUpper(LU) approximatefactorization.Here, thefluxes

devisedbyJamesonandTurkel(1981),viz.: A 1 = (A + tAI)/2 and A 2 = (A - IAI)/2, are

used to achieve diagonal dominance. The operators d + and d- denote forward and

backward difference operators, respectively. The terms x e and x 4 , and £i and _e are the

artificial dissipation coefficients for the LU decomposition and the ADI schemes,

respectively. Equation (3.36) is the Beam-Warming ADI scheme for the Navier-Stokes

equations, which degenerate to the Euler equations when the viscous flux Jacobians

R, R 1, R 2, S, S l, S 2, Y, Y1, Y2 aresett°zer°.

3.3.1 Fourier Symbols

The bi-grid amplification matrix M(O)^ is constructed from M = _2(I _ IhHLH llhHLh)_ "

For ease of presentation, the Euler equations alone are selected for illustration, with the ADI

central scheme used as the smoother. In this case, viscous fluxes R, R 1, R 2, S, S 1, S 2,

A

Y, Y1, Y2 are set to zero. The components operators of matrix M(O) are expressed as

follows:

^

(i) The fine/coarse grid Operator L

The Euler equivalent form of Eq. (2.15) is

OQ _ (OE OF OG)Ot "_ + "_ + _ + dissipation (3.37)

where dissipation is added to damp oscillations. Thus, in quasi-linear form:

(OQ OQ _z ) [ A OZQ °2Q OZQ'_L(Q) = - A--_ + B--_ + C + ei_ x--_x z + Ay-_y 2 + Az--_z2 ]

-- ee(AX 3 04Q

- 3 O4Q _3 04Q_ (3.38)

+/__ly _ + Az --_Z4]
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Holding A, B, C locally constant and employing second-order central differencing, the

Fourier symbol of the fine grid problem assuming equal mesh spacing in all directions

becomes

A

Lh(O m) = I [A sin(O_') + Bsin(O_ n) + Csin(O_')]
Ax

2_ i r m

+ yx[COS(OI) + COS(07)+ Cos(O -- 3]

[16ee sin 4 + sin 4 + sin 4
Ax

m=l,8

(3.39)

Note that O_n represent the k th element of the O m component (see Eq. (3.9-3.11)).

For any arbitrary mode, Eq. (3.39) is a 40 X 40 matrix since each Jacobian is a 5x5 matrix and

there are 8 harmonics including the fundamental mode. The coarse grid problem is assumed

to be a version of the original problem on the fine grid and the coarse grid is formed simply by

deleting every other fine grid point. Thus, the mesh size and Fourier modes are { 2Ax, 2(9 _}

and its Fourier signature can be written as:

^ E i

LH(201) = 2AxI [a sin(20_) + B sin(20v). + C sin(2Oz)] + _xx[COS(20x) + cos(20 v).

8ee (sin 40x + sin 40v + sin 40z) (3.40)+ cos(20 z) - 3] - _xx

In the above equation, only the fundamental mode, O 1 = {Ox, Oy, 0 z}, is employed since the

coarse grid problem is assumed to be solved exactly. Hence, this is only a 5 X 5 matrix.

(ii) The relaxation Operator

Each of the equations (3.31)-(3.33), (3.35) and (3.36) can be expressed as

NAQ" = - L = - AtR n (3.41)

von Neumann stability analysis is used on this system of linear equations by letting the

step-by-step solution be characterized by
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Qn = uo_ neliO_eljO,elkO_ (3.42)

where 2 is the single grid amplification factor. Thus, Eq. (3.41) reduces to a complex

generalized eigenvalue problem of the form

A A A A A

Kx = 2tNx where K= N- L (3.43)

A A

The Fourier symbols of Nand L, for our particular example, can easily be shown to be

N(09") = I + A/sin(O]") +
_x\ 4ei sin2-_-)] [ I +_y(Blsin(O_)+4eisin2-_-)]

__,(09 m) = -_xl(A sin(O]") + B sin(O_') + Csin(O_'))

16zJ'ge (sin4-0 _ sin4-_ sin4-_)+ Ax \ + +

(3.45)

The Fourier symbols corresponding to the other approximate factorizations are documented

in Demuren and Ibraheem (1992). For each harmonic, 0 m (m = 1,8), Eq. (3.43) is solved

A

to give five eigenvalues from which the elements of S(O) are constructed. For example, if the

eige nvalues corresponding to the mode O 1 = {Ox, Or, Oz} are A = {2 a, 22, 23, )t4, 25 }, the n,

from Eq. (3.11), 3(01) = A I. The effective fine grid smoothing operation is obtained by

raising the smoothing matrices to the power of v 1 andv 2, the pre- and post-smoothing

counts, respectively.

(iii) The Transfer Operators _hand/_h

For a second-order interpolation, the Fourier symbol of the prolongation operator, from Eq.

(3.12), is expressed as
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_(0 m) = _[1-4-cos((gT)][1 + cos(O_)][1 + cos(O_)] (3.46)

The restriction operator, I h , is computed from this equation and Eq. (3.13) assuming

full-weighing.

A

Based on the above operators, M(O) is assembled from M = _2(I _ ihZHh-IlhLh)S_IH _ . A

symbolic form is given in Appendix C. It is an 8x8 block matrix of which each elemental

block is a 5x5 matrix.

3.3.2 Solution Procedure

The eigenvalues for the bi-grid matrix )14(O) are computed from Eq. (3.8) over fixed Fourier

modes to obtain the amplification factor. Sixteen modes are selected, in the range

- _r/2 <__O l --- at/2. The smoothing factor is also computed from the generalized

eigenvalue problem (3.43) over only the high-frequency modes at/4 < IO11 < zr/2 as

2u_sg = max(121). In each case, the eigenvalues are solved for using the linear algebra

routines such as found in the IMSL library. Uniform flow is assumed with M _ = 0.8, zero

yaw (Cry) and angle of attack (Cta), and y = 1 . 4. Further, the grid spacing is assumed to be

uniform in all directions. Effects of aspect ratio and flow skewness are also investigated. The

time-step and Reynolds number are calculated from

CFL
At=

,v, ,w, v/A__7 1] (3.47)

Re =

Some other pertinent definitions used are as follows:

IV] = flu 2 "4- 1; 2 -t- w 2

(3.48)

Moo =IV1, --if- , v = u tan(ay) , w = u tan(aa) (3.49)

A batch file used to submit a typical 3-D test case is shown in Appendix D.
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3.3.3 Convergence Rates

In previous sections, we have thoroughly assessed the capability of bi-grid analysis to

predict more accurately the performance of multigrid methods using scalar model equations.

In order to completely rely on its results to guide us in correctly implementing multigrid

procedures in future chapters, it is equally very important to know how bi-grid will predict

multigrid performance in complicated practical problems. Rather than implementing

multigrid procedures for each of the schemes discussed above, as we have done for the scalar

model problems, we base our comparisons on the actual multigrid solutions obtained by

Anderson et. al. (1988) for the three upwind based factorizations using van-Leer flux-vector

splitting. The multigrid solutions were obtained for the ONERA M6 wing at transonic

conditions: a Mach number of 0.84, an angle of attack of 3.06 ° and mesh size 97X17X17.

From Figs. 3.13(d)-3.13(f) the prediction (from both the single grid analysis and bi-grid

analysis) rates multigrid performance for these schemes in this order: spatial, combination

and eigenvalue factorizations, which also agrees with the results of Anderson et al. However,

they experimentally found that practical multigrid solutions required an optimal CFL

number of about seven for each of the schemes. This is the exact result predicted by the

present bi-grid analysis, and is much greater than the CFL of about three predicted by the

single grid analysis. Anderson et al. also computed the convergence rates for the best scheme,

namely spatial factorization, and the worst scheme, namely the eigenvalue factorization.

Their results are compared with the values predicted by the bi-grid and smoothing factors in

Table 3.1. From this table, the superiority of bi-grid analysis over single grid analysis is

further demonstrated. Although the eigenvalue factorization has the worst multigrid

convergence rate of 0.93, Anderson et al. found that it represents a good improvement over a

corresponding single grid computation with a convergence rate of 0.98. This latter value also

coincides with _max computed in Chap. 2 for this scheme.
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Table3.1"ConvergenceCharacteristicsof TransonicFlow onONERA M8 Wing

Optimal Spatial Eigenvalue Combination Comment

(CFL,2)_-sg 3,0.76 3,0.80 4, 0.75

(CFL,J')max -bg 7, 0.89 7, 0.91 7, 0.89

(CFL, Q)mg 7, 0.90 7, 0.93 7, --

single grid analysis

bi-grid analysis

From Andersen et al.

(1988)
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3.3.4 Results for the Euler and Navier-Stokes Equations

Figure 3.13 shows the convergence results for the 3-D Euler equations using the upwind

schemes. The computed values for the smoothing factor(2u_sg ) and bi-grid amplification

factor ('_max_bg) for the spatial, eigenvalue, and combination factorizations based on the

Steger-Warming flux-vector splitting are shown in Figs. 3.13(a)-(c), respectively. Both

factors predict instability for the spatial-split scheme, especially for a CFL number beyond

five. In the eigenvalue and combination factorizations, better convergence characteristics

are observed, although the smoothing factor's prediction is slightly more optimistic. For

these two factorizations, bi-grid analysis predicts near instability at CFL number above 25,

whereas the smoothing factor predicts unconditional stability for all CFL numbers. Figs

3.13(d)-(f) show predictions for multigrid performance of each factorization using the van

Leer flux-vector splitting. Except for the spatial factorization, all the schemes are predicted

unconditionally stable for all CFL numbers by both bi-grid and smoothing factors. The

spatial factorization is stable only for CFL numbers below 12 and possesses better

convergence characteristics at CFL number below 8 than the other two factorizations. From

both analyses, i.e. from (,;t_ sg) and ('_max_bg)' Van Leer flux-vector splitting gives better

convergence characteristics than the Steger-Warming method for multigrid procedures. It is

observed that the present results of the smoothing factors for the van Leer method are similar

to those presented by Anderson et. al. (1988), and Demuren and Ibraheem (1994).

Results for the 3-D Euler equations using the LU approximate factorization with central

difference approximations and various levels of second- and fourth-order artificial

viscosities, u 2 and x 4, are shown in Figs. 3.14(a)-(c). Without the addition of second-order

dissipations, i.e. u2 = 0, the coefficient _4 = 0.3 yields the optimal results (see Fig.

3.14(a)). From Figs. 3.14(b) and 3.14(c), bi-grid and single grid analyses predict that an

appropriate combination of x 2 and u 4 (especially when x 4 -> u 2) can significantly improve

the performance of the LU scheme when used as a relaxation scheme for multigrid. Also for
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all levelsof dissipation,thesmoothingfactorsestimatesaremoreoptimisticthanthebi-grid

results,especiallyat lowerCFL numbers.

Theconvergencecharacteristicsfor the3-D EulerandNavier-Stokesequationsfor different

levelsof artificial dissipationandReynoldsnumbersareshowninFigs.3.14(d)-(f) andFig.

3.15, using the Beam-Wanning(ADI) central differenceschemeas the base solution

algorithm.With no dissipationaddedto the Euler equations(Fig. 3.14(d)), the bi-grid

analysispredictsinstability for all CFL numbers,while the smoothingfactor predicts

stability for CFL numbersbelow 15.From Figs. 3.14(e)and 3.14(f), optimal multigrid

performanceis predictedby thebi-grid analysisfor dissipationlevelsof ee = 0.5 and

e i = 1 . 0. These results are similar to those obtained for the Navier-Stokes equations at

Re= 106 (see Figs. 3.15(d)-3.15(f)). With Reynolds number of 100 and no dissipation, both

bi-grid and smoothing factors predict stability for certain range of CFL numbers although

the latter is more optimistic. Also at this Reynolds number, the optimal dissipation levels are

e e = 0. 5 and/?i = 1.0.

All computations have been based on zero yaw and angle of attack, and also on uniform grid

spacing in all directions. Sensitivities of convergence characteristics to flow skewness and

aspect ratio are studied using the ADI central-difference scheme at Reynolds number of 100,

and dissipation levels of ee = 0 . 5 and ei = 1 . 0. The results are shown in Figs. 3.16 and

3.17. Generally, convergence characteristics are improved with increases in yaw angle at

zero angle of attack, although the range of stable CFL numbers becomes smaller (Figs.

3.16(a)-(c)). From Figs. 3.16(d)-(f), no significant difference is observed in the

convergence results when the yaw and angle of attack are set equal to each other. However,

from Fig. 3.17, the convergence characteristics become worse with increases in grid aspect

ratio.
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Fig. 3.1: I-D Convection Equation (a) Steady solution(b) Convergence

Characteristics (Euler forward explicit; Periodic B.C's).
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Fig. 3.13: 3-D Euler Equations using upwind schemes (a)-(f)

Convergence Characteristics (v1=1; v2=0)
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Fig. 3.17: 3-D Navier-Stokes Equations using central schemes (a)-(f) Convergence
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3.4 Concluding Remarks

Bi-grid stability analysis has been presented for typical explicit and implicit solution

methods for model problems which range from the diffusion equation to the convection

equation and including the convection-diffusion equation at different Peclet numbers.

Bi-grid amplification factors were compared with smoothing factors and multigrid

convergence rates. The predicted bi-grid amplification factors agree quite well with the

asymptotic convergence rate of the multigrid method. The smoothing rate of the relaxation

scheme obtained from a local mode analysis on a single grid is not an accurate predictor of the

multigrid convergence rate. For multigrid performance in large scale practical

computations, bi-grid amplification factors and smoothing factors were computed from the

system of 3-D Euler and Navier-Stokes equations; various approximate factorization

methods that are popular in practice have been considered. The bi-grid results also compared

better with the convergence rate of a typical multigrid solution of the 3-D transonic flow than

did predictions of the smoothing factor approach. Armed with this versatile tool, the

multigrid procedure can now be developed in subsequent chapters for both 2-D and 3-D

steady flows.
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Chapter 4

COMPUTATIONAL METHOD

The 2-D and 3-D Proteus computer codes were developed at NASA Lewis Research Center

by Towne et al. (1990, 1992). The codes solve the Reynolds averaged, unsteady

compressible Navier-Stokes equations in strong conservation law form. The governing

equations, derived from the basic principles of conservation of mass, momentum and energy,

are written in Cartesian coordinates and transformed into generalized nonorthogonal body

fitted coordinates. They are solved by marching in time using a fully coupled

alternating-direction-implicit (ADI) solution procedure with generalized first- or

second-order time accuracy. Turbulence effects are accounted for using either an algebraic

or two-equation eddy viscosity model. A brief summary of the mathematical formulation for

the 3-D version follows.

4.1 Governing Equations

The basic governing equations are the three-dimensional compressible Navier-Stokes

equations. In generalized curvilinear coordinates, the three-dimensional planar equations

can be written in strong conservation law form using vector notation as:

OQ + O(E - Ev) + O(F - Fv) + O(G - Gv) _ 0 (4.1)
Ot O_ Orl O_

where the conserved variables of vector Q are defined as:

77



Q = 1112, ou, ov, pw, oeo] T (4.2)

The inviscid flux vectors E, F and G are

OU_x + Ov_y + Ow_z 1

(ou2+ p)_x+ ouv_,+ ouw_z ]
ouv_x+ (ov2+p)_,+ovw_ |
@UW_x "4" @VW_y "F (QW 2 -t- P)_Z I

(Oeo + p)u_x + (Oeo + p)v_y + (Oeo + p)w_ d

(4.3)

@Urlx + OVrly + @Wrh

(on 2 "}- p )T]x "t- @UV_y "t- OUWI']Z

@UV?_x + (@V 2 "+" p )?Jr "}- @VWY]z

@btW_x "4" @VW'Y]y "t- (@W 2 q- p )1"]Z

(@eo + p)urb, + (@eo + p)V'qy + (@eo + P)Wrh
m

(4.4)

OU_x + Over + Ow_z

(@U 2 -t- P)_x q- @UV_y "t- @UW_z

oUV_x+ (ov2 + p)_y + ovw_z

puw_:, + @VWCy+ (@w2 + P)¢z

(@eo + p)U_x + (@eo + p)V_y + (@eo + p)W_z

(4.5)

The viscous flux vectors E v, F v and G v are

0

T"x_ x "1- T x'y_ y + T X_ Z

12xy_x q'- T,yy_ y -4- T yz_ z

rxz_x "4- ryz_y "_- TZ_ z

l_ x_ x "1- _ y_ y q- t_ Z_ Z

(4.6)
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GV _ _m

1 1
JRer

m

0

r_gx + _y_y + rxz_z

r.y_x+ ry_y + ryz_z

rxz_x + Tyz_y + T.ZZ_Z

- flx_x "at- fly_y "[- fZ_Z

(4.7)

F v = 11__!__
JRer

m

0

T,xx_ x "b T,xy_ y "q" _ xz?] Z

T,xyt]x "b T,yy_y "b ryz_ z

rxzr]x + ryzrly + Zzzt]z

fl xl'] x + fly'Jr q" f z_] z
B

(4.8)

where

!

fx = uz= + Vrxy + wrxz - _rrqX
1

fly = bt"_xy, -t- VTyy + W'Cy z -- _rqy

1
By = llrxz -b Vr.y z + WI'zz -- _-¢cqz

llr

(4.9)

and

o, ;t[_ ov Ow)_xx= 2/_+ \ox+-_+-g i
l

ov _(_ ov ow)
Tyy _" 2#_'_+ \ Ox + "_ + "_

l

ow z(_ ov ow)_==2_+ _Ox+_+_

Zxy = It + , rxz = kt + ,

_ k OT
qx =

= _ k OT
qY Oy

= _ k OT
qy -_

+ (4.10)
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The governing equations as expressed above have been nondimensionalized using reference

conditions Ur, l,., 0," andTr. The derivatives in the shear stresses and heat fluxes are in

Cartesians coordinates and must be evaluated in terms of the generalized coordinates using

the chain rule. For example,

Ou _ Ou Ou Ou
--ox - x + ,jx + x (4.11)

Note that the conserved variables and all the fluxes are defined in curvilinear coordinates and

not in Cartesian coordinates as in Chaps. 3 and 4. In addition to the above equations, an

equation of state is required to link the pressure to the dependent variables. The ideal gas law

is chosen which for a calorically perfect gases can be written as

 )[oeo (4.12)

4.2 Time Differencing

The governing equations are solved by marching in time from some known set of initial

conditions using a finite difference technique. The time differencing used is the generalized

scheme of Beam and Warming (1978), where the time derivative term in Eq. (4.1) is written

as

[(, ]OQ 01 O(AQ") 1 OQ n 02 AQ(n-l) + 0 01 -._ 02 t,(At) 2 (4.13)
Ot 1 + 02 Ot + 1 +0 z Ot + 1 +02 At

or,

AQ n = OjAt O(AQ") At OQ"
1 + 02 Ot + 1 + 02 Ot + _AQ("-1)I+02 + 0 01 -- "_ -- 02 t,(At) 2 (4.14;

where A Qn = Q,+ l _ Qn.
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Theparameters01 and 0 2 determine the type of time differencing scheme used. Some of the

methods available with the above formula are given in Table 4.1.

Table 4.1: Different Types of Time-Stepping Methods

01 0 2 Method Truncation Error

0 0 Euler explicit O(A t)

0 -1/2 Leapfrog explicit O(A 02

1 0 Euler implicit O(A t)

1/2 0 Tapezoidal implicit O(A t) 2

1 1/2 3-point backward implicit O(A t) z

Solving Eq. (4.1) for OQ/Ot and substituting the results into Eq. (4.14) for O(AQ")/Ot and

OQ"/Ot yields

AQ n= O,At (O(AE n) O(AF n) O(AG_n)_
1+o2_-_ + o--U-+ o_ /

01A t (O(Zl_v) O(AF_) O(AG_)

+ + +---U-}

At (c3En + OF n OGn]
l +o2\ o_ -Y#-+ _1

(4.15)

At (OEnv OFnv OG_]

I +02\ o_ +-E + o_ } +_ 02 [(1 + 02 AQ(n-1) + 0 01 12 02)At, (At)z]

4.3 Linearization Procedure

Equation (4.15) is nonlinear, since, for example, A E" = E" + l _ E" and the unknown E n + 1is

a nonlinear function of the dependent variables and the metric coefficients resulting from the

generalized grid transformation. The equations are linearized in order to use the finite
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differencetechnique.For anynonlinearexpressionG, a Taylor seriesexpansionabouta

known timeleveln canbewrittenas

G" + 1 = G" + -_A t + O(A t) 2 (4.16)

This linearizafion procedure, when applied to the entire inviscid fluxes AE", AF" and AG n

terms in the Eq. (4.15), can be expressed as

AE" = AQ" + O(At) 2

OFn OnAF" = A + O(At) 2

OG_ _AG" = AQ + O(At) z

(4.17)

(OE/OQ) n, (OF/OQ) n and (OG/OQ)" are the flux Jacobian matrices.

The viscous fluxes A E_,, A F_, and A G_ are also linearized, 'although in a slightly different

manner. The mixed, or cross, derivative terms in these fluxes would lead to considerable

complications in the implicit numerical solution algorithm. In order to avoid this problem,

the fluxes are split directionally as

E v = Ev_ + Ev 2

F v = Fv_ + Fv 2

G v = Gv_ + Gv 2

(4.18)

Thus, Ev_, FVl and Gv, only contain derivatives in the _ and r/directions, respectively, and

Ev2 Fv2 and Gv2 contain derivatives in _e other direction. The linearization for the Ev, Fv,

and Gv, fluxes is carried out in a similar manner as in the inviscid case while the cross

derivatives terms are simply lagged as follows (Beam and Warming, 1978)
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z_ET:_= A_' + o(zJt)2

AFt,2 = AF,,-Iv2+ O(At)2

AG_: 2 = AG,,-Iv2 + O(At) 2

(4.19)

With these equations, the linearized form of Eq. (4.15) can now be written as

AQ n + _.
01A t 0 OE n 0 OF n 0 OG n

1 + 0 2 Z_Qn + AQ + AQ

0 iA t 0 OFv_

1 "-b--O 2 AQn + -_ _ AQn + AQn =

+

•2 W 02 ]l + 02 AQ(n-I) + 0 01 -- "_ -- 02 (At)2,(03 -- Ol)(At)2,(/It) 2

(4.20)

03 is introduced to replace 01 in the coefficients of the cross derivative viscous terms. 03 is set

equal to 0, for second-order time accuracy. For first-order time differencing, however, 03

can be set equal to zero without losing accuracy.

Equation (4.20) can be further put in the following form:

At(OE OF OG_n+ At[ OEv' OFv, OGv,_ n,+0_ _+_+ o_: ,+o----S\--_-+-_-+ ac} (4.21)

(l.+.O)L__t(OEv z OFv z OGv,_ n 03At (OEv: OFv, OGvz_ n

,+02 \ o_+-_-+ o_! ,+o2\--_-+--_ + o_)+

02 [I '1 + 02 AQ(n-1) + 0 01 2

where 0/0_ term as an example is meant to imply



0E n n

(4.22)

4.4 Solution Procedure

The governing Eq. (4.21), presented in linearized matrix form result in a system of algebraic

equations. The coefficient matrix is banded and the band width depends on the grid size and

choice of spatial differencing method. The left hand side requires an inversion of a very large

matrix. The exact inversions of the matrix is very costly due to the large number of operations

and computer memory required. To reduce this computational expense, an approximate

factorization (AF) method is introduced which factors the implicit operator into a sequence

of easily invertible matrices. The splitting is based on the alternating direction implicit (ADI)

method of Beam and Warming, where splitting is along the spatial directions as follows:

LHS(4.21) =
I + 1 +020 _ _ OQ I + 1 +020rl _ "_ }]

01At 0 OG Q.
I+ 1 +020_ -_ A +h.o.t

(4.23)

The higher-order-term (h.o.t) represents the splitting error which can be neglected without

affecting the overall time accuracy of the algorithm, even when second-order time

differencing is assumed. However, this approximate factorization error may place a

restriction on the choice of time step.

Equation (4.21) can thus be rewritten in a spatially-factored form, which, neglecting the

temporal truncation and splitting error terms, becomes
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[( )lnE inI + f¥-02_-_ -gO 5-6 l + 1 + o2o_\oo_- -gO-}

[ ( )in01At 0 OG OGv_

I + 1 +020_ OQ AQ" =

(4.24)

At OE OF oo]n + + 02\ O_ + +1 +02 "_'+'_'+ O_t 1 _ --_--]

+ 1 +02 \ O_ +-'_-+ O_ ] 1 +02\--_'+--_ "-:+ O_ ] + 1+0---_ AQ(n-')

The equations in the approximate factorization form presented above are split into the

following three-sweep sequence:

Sweep 1 (_ direction)

01At OE Q,
I+ 1 _-02 _ _ Z =

At (OE OF OG_"+ At { OEv,1 +02 -_+'0"_ + 0_] 1 +0"-----'_2_"_"+

(1 +03)At(OEv, 3Fv, OGv2_ n Oydt (OEv 2 3Fv 2

1+02 \--_-'_+'-b-'_ + O_ ] 1 +02\--_--+-'b--_ --

OFv' OGvl] n (4.25)
--_-+ o_ }

OGvz _ n 02

+ O_ ] + 1 + 02/'1Q(n- 1)

Sweep 2 (r/ direction)

I + 1 +020rl _ OQ,]
=AQ* (4.26)

Sweep 3 (_ direction)

I+ 01At 0 (1 + 0 20_ inOG OGre) Q**OQ . OQ A Q n = A
(4.27)
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In the above equations, Q*, Q** represent intermediate solutions to the governing equation.

Each sweep requires the solution of a series of 5x5 block-tridiagonal systems and can be

efficiently solved using the Thomas algorithm.

4.5 Space Differencing

To solve the governing equations, an evenly spaced grid is defined in the computational (_, r/

) coordinate system. The spatial derivatives in Eqs. (4.25) to (4.27) are then approximated by

second-order finite difference formulas. First derivatives in the _ direction are, for example,

approximated using the following central difference formula:

= - _,j
#,j

(4.28)

The subscripts i and j represent grid point indices in the _ and r/directions, respectively. The

non-cross derivative viscous terms and the cross derivative viscous terms in the _ direction

all have the form -_ [f--_(gAQ)] andO/t'0g_ respectively. It can be shown that their,j V o,7),j

second-order central difference approximation can be written as

-- _{(//_ |l/ "t- fij)(gAQ)i_lj- (//- l, -I- 2L. J -,}- fi+lj)(gZQ)ij

+ (f,j + f,+lj)(gilQ)i+ij}

(4.29)

0_ \-' at/],j , (4.30)

4A _zl r/ +ld+l 1

When first derivatives are needed normal to a computational boundary, such as for Neumann

boundary conditions, either first- or second-order one-sided differencing is used.
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4.6 Artificial Viscosity

With the central difference formulation presented above, high frequency instabilities can

appear as the solution develops. For example, in high Reynolds number flows oscillations

can result from the odd-even decouplings inherent in the use of second-order central

differencing. In addition, physical phenomena such as shock waves can cause instabilities

when they are captured by a finite difference algorithm. Artificial viscosity, or dissipation, is

normally added to the solution algorithm to suppress these high frequency instabilities. Two

artificial viscosity models are considered in this study: a constant coefficient model used by

Steger (1978), and the nonlinear coefficients model of Jameson, Schmidt and Turkel (1981).

The constant coefficient model uses a combination of explicit and implicit artificial

viscosity. The explicit artificial viscosity is further a combination of fourth- and

second-order differences. As stated by Caughey (1988), the second-difference terms

dissipate spurious waves in the shock region and fourth-difference terms are employed for

steady state convergence. The implicit artificial viscosity is sometimes necessary to extend

the linear stability bound of the fourth-order explicit dissipation.

The explicit artificial viscosity is implemented in the numerical algorithm by adding the

following terms to the source terms in Eq. (4.25):

t_lt 7¢d_ Q + (7_Aq) Q + _'¢d_) Q (4.31)e t V_A_Q + VrtLIqQ + VcA¢Q - --7-

The implicit artificial viscosity is implemented by adding the following terms to the implicit

terms of Eqs. (4.25) to (4.27), respectively
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e_t[vcd _(JAQ*)] (4.32a)

e_t [v_,7(JAQn)] (4.32b)

e_t[vcA_(jAQ,)] (4.32c)

In Eq. (4.31), e 2 and ee4 are the second- and fourth-order explicit artificial viscosity

coefficients, and in Eq. (4.32), e, is the implicit artificial viscosity coefficient.

The nonlinear coefficient artificial viscosity model is strictly explicit. Following the

approach of Pulliam (1986), the following terms are added to the source term of Eq. (4.25).

q.. _Tq{[(__)j+l "k- (-_) ] (E_ArIQ - g_l_rl_rlZlrlQ)j

"t- V_ "_ k+l-Jr- k

(4.33)

where _ is define as

(4.34)

and _x, (Py and _z are spectral radii defined by

_X A_

I?']xlZ + ?_yV "}- T]zWI "1- a _I"] 2 --}- 712 .4_ ?72

At1

I_xl_ "_- _yV "t- _zWI + a _/_2 x + _2 ..}_ _2

A_

(4.35)
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The parameters t z and/?4 are the second- and fourth-order artificial viscosity coefficients.

Instead of being specified directly by the user, as they are in the constant coefficient model, in

the nonlinear coefficient model they are a function of the pressure field. For coefficients of

the _ direction differences,

(4.36)

where

ai=] pi+l-2pi+pi-l ] (4.37)
Pi+l 2Pi + Pi-I

Similar formulas are used for the coefficients of the r/direction differences.

The parameter a is a pressure-gradient scaling parameter that increases the amount of

second-order smoothing relative to the fourth-order smoothing near shock waves. The logic

used to compute e 4 serves to switche off the fourth-order smoothing when the second-order

smoothing term is large. The parameters x_ and x 4 are user-specified constants, and the

optimum values are problem dependent.

4.7 Turbulence Models

The Navier-Stokes equations Eq. (4.1) solved in this study are time-averaged; i.e., they are

the Reynolds-averaged Navier-Stokes equations. Therefore, they do not contain enough

information for turbulence to form a closed set of equations. To remedy this problem, the

Reynolds stress and turbulent heat flux terms are modeled using the Boussinesq approach.

The turbulent Reynolds stress resulting from time averaging is assumed proportional to the

laminar stress tensor with the coefficients of proportionality defined as eddy viscosity,/xt.

Similarly, the turbulent Reynolds heat flux is assumed to be proportional to the laminar heat
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flux with thecoefficientof proportionalitydefinedasturbulentthermalconductivity, kt. An

effective viscosity is thus defined as /_ =/_z + _t, and an effective thermal conductivity

coefficient is defined as k = k t + kt. Itt is the laminar (or molecular) viscosity coefficient,

and k_ is the molecular thermal conductivity coefficient. These turbulence coefficients are

computed in this study using either a generalized version of the Baldwin and Lomax

algebraic eddy viscosity model (1978), or the Chien (1982) model. The former is a two-layer

algebraic model while the latter is a two-equation k - e model. The Chien formulation for

the k - e model is chosen in particular because it is numerically stable and approximates the

near wall region reasonably well. A detailed analysis of these two turbulence modelling

methods is presented by Towne et al. (1990).

4.8 Boundary Conditions

Improper treatment of boundary and initial conditions can lead to serious errors and perhaps

instability in the numerical solution. For the above solution algorithm, the boundary

conditions are treated implicitly. Several types of boundaries that can be encountered in real

problems are adequately provided for. Such boundaries can be real or artificial. Real

boundaries include simple solid or porous surfaces and artificial boundaries can be far field

boundaries or symmetry planes. Since the equations are solved by marching in time, a set of

initial conditions (throughout the flow field) is also required to start the time marching

procedure. For unsteady flows, they should represent a real flow field, and a converged

steady state solution from a previous run or experimental results may be a good choice. For

steady flows, the ideal initial conditions would represent a real flow field that is close to the

expected final solution.
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4.9 Concluding Remarks

The above formulations have been made for the 3-D planar form of Navier-Stokes

equations in curvilinear coordinate system. Detailed analysis including formulation for

axisymmetry forms can be found in Towne et al. (1992). Complete formulation for the 2-D

version can also be found in Towne et al. (1990).
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Chapter 5

MULTIGRID METHOD AND RESULTS

A multigrid procedure has been developed to accelerate the convergence of the

Beam-Warming ADI numerical scheme formulated in previous chapter. The multigrid

algorithm adopted is the Full Approximation Storage Full Multigrid method (FAS-FMG)

which is applicable to nonlinear systems of equations. Test problems with different

geometries and flow conditions are selected to validate the implementation. Practical

convergence rates are compared with predicted rates from both the bi-grid and the single

grid analyses for a 2-D problem.

5.1 Full Approximate Storage Full Multigrid (FAS-FMG)

Consider the problem

Lh(Vh)=/' (5.1)

where L h is a non-linear operator on a grid, gh, with spacing h. The forcing function, f, is

known and Uh is the solution to the problem on the grid with spacing h. Taking uh as an

approximation to Uh with an error

Vh = Uh - u h (5.2)

Equation (5.1) can be expressed as

Lhu h is subtracted from both sides of Eq. (5.3) to give

(5.3)
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Lh(uh + Vh) - Lh(ua) = fl - Lh(uh) (5.4)

If the terms are smooth, they can be represented on a coarser grid, g2h with spacing 2h. The

grid g2h is formed by deleting every other point in gh., therefore, gEh is a subset of gh. Points

are eliminated from g2h tO form g4h, and so forth, to form g8h,gl6h etc. Each subsequent grid is

a subset of the previous grid, which places compatibility constraints on the number of grid

points in each direction. On the coarse-grid, gEh, Eq. (5.4) becomes

L_(_,_+v_)- L_(_,_)=_- L_(_)) (5.5)

or

where

LEh(u2h ) = f2h (5.6)

I_ = I_(_- L_(,_))+z._(1_,_) (5.7)

where 12h is the restriction operator.

Since Eq. (5.6) is on a coarser grid than Eq. (5.1), the numerical solution for//2h is much less

expensive to obtain because fewer points are involved. Note that the operator used on the

coarse-grid has the same form as the fine-grid operator, the grid spacing (h and 2h) being the

only difference. Once the v',dues of t/2h are obtained, the fine-grid iterative solution is

updated using the following equation:

(Uh)New -_- (Uh)old + lhh[u 2h- 12h(l_h)old I (5.8)

and lhh is the prolongation operator.

A grid with spacing 4h can then be used to find corrections to the "solution" of the problem on

the grid with spacing 2h. Successively coarser grids may be used until a grid is reached which

is so coarse that a direct solution may be used (or a nearly exact solution with only a small

number of iteration sweeps). The correction from the coarsest grid is then used to correct the
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correctionon thenextfinergrid; andthis iscontinuedthroughsuccessivelyfinergridsuntil

thefinest level is reachedandtheapproximatesolutionis updated.

Theusefulnessof correctionsobtainedonacoarsergrid is dependenton thesmoothnessof

the fine-grid error passedto the coarse-grid.Hence,it is absolutelynecessarythat the

high-frequencycomponentsof theerroron thefine-grid beminimized,if notcompletely

eliminated.It is the responsibilityof the smootherto dampenout the high frequency

componentsof the error.The removalof the low-frequencycomponentsof the error is

unimportantfor all but the coarsestgrid sincethesefrequenciescanbe resolvedon the

coarsergridswheretheybecomehighfrequencies.If thehighfrequenciesarenot damped,

thentherestrictionoperatorwill passaliasedinformationto thecoarsergrid andtheentire

multigridschemewill ceasetoconverge.Obviously,thechoiceof thesmootheriscritical to

theproperfunctioningof multigrid. Somesmoothersarenaturallyeffectiveandsomehave

to bemodified.For instanceElmiligui (1992)hasdevelopedcoefficientsfor Runge-Kutta

multistagetime-steppingschemesuchthatgoodhighfrequencydampingcanbeachievedat

relativelyhighCFL numbers.In thepresentwork moreaccurateanalyticaltools,presented

in Chaps.2 and3, haveprovidedinsightinto theeffectivenessof thesmootherused.

Thecycleof workperformed,startingonthefinestgrid, successivelyusingthecoarsergrids,

andthenreturningto thefinestgrid is calledonemultigrid cycle.The cyclesarerepeated

until sufficient convergenceis obtainedon thefinestgrid. Examplesof popularmultigrid

cyclesaresketchedin AppendixE.

Therestrictionoperatorhastwo forms.Oneform isusedto restrictthedependentvariables,

IZh(uh): i.e., the flow field quantities O, Ou, ov, andoeo and the other form is used for the

restriction of residuals, lZh[Lh(uh)]. In this study, the injection method is used in the former

and the full weighting technique is used in the latter. The prolongation operation, lhh, used in

the current work is a bi-linear interpolation for 2-D, and tri-linear interpolation for 3-D.
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With this general discussion of the FAS-FMG algorithm in focus, its application to the

formulated ADI scheme becomes clearer.

5.2 Multigrid Application to the ADI scheme

The 3-D ADI scheme can be written in the operator form:

LIL2L3,d Q = - AtR (5.9)

where L_, L 2 andL 3 are operators to represent the implicit ADI factors, and A Q,A t andR are,

as usual, flow field corrections, time step and residual. A simple multigrid cycle is performed

as follows:

(1) Solve Eq. (5.9) on the finest grid gh i.e.,

h h h = _AtR hLIL2L_ Qh (5.10)

(2) Compute the flow field at the present time step.

(Q.+l)h = (Qn)h + (AW_)h (5.11)

(3) Compute the residual g h from the right-hand side of Eq. (4.22),

(4) Transfer the flow variables Qh and residual R h to grid gZh and compute the forcing terms

p2h as follows:

p2h = 12hRh _ R2h(Q2h) (5.12)

(5) Then, the coarse grid g2h problem, driven by the forcing terms, becomes:

2h 2h 2h 2h _ t(R2h(Q2h) + __L_ L 2 L 3 'AQ = A I2hhRh RZh(l_hQh) ) (5.13)
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(6) Steps(3)-(5) is repeatedrecursivelyon g4h, gSh, etc. to solve for the corrections, and the

cumulative corrections are interpolated on to the fine grid and added to the solution, until the

finest grid gh, for example:

Q2h .__ Q2h "4- 142_h(Q 4h - "2hf4hFj2h_' (5.14)

Qh ___Qh + ihh(Q2h _ i2hQh) (5.15)

The above steps are repeated on the fine grid until R h = 0 or a predetermined tolerance level,

since we are interested only in steady state solutions. Depending on the schedule for the grids

and the order in which they are visited, the multigrid structure may take the form of a simple

V-Cycle or more complicated ones like the full multigrid V-Cycle or the W-cycle. See

Appendix E for some samples. In the present study, the full multigrid V--Cycle is utilized

throughout.

In general one iteration is performed on the finest grid, one on intermediate grids and four on

the coarsest grid. But on coarser grids, the computational work is successively reduced by a

factor of 4 for 2-D and by a factor of 8 for 3-D. This implies that the computational work

units (relative to a single grid iteration on the finest grid) for a three-level multigrid cycle is

13for 2-D and 1 5for 3-D. Additional overheads for intergrid transfers, generation of grids

and calculation of metrics on coarser grids, calculation of residuals, etc., raise the total work

units to about 2 5 and 2 respectively, for 2-D and 3-D multigrid procedures. That is, the

multigrid convergence rate must be faster by at least these factors for there to be a saving in

CPU time. One method for reducing the relative overhead of the multigrid procedure is to

perform more fine grid iterations per multigrid (MG) cycle, e.g., three iterations on the finest

grid instead on one. Then the effective total work units per MG cycle are reduced to 2 and 15

respectively. Preliminary tests showed that this latter approach is better for 2-D
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computations whereas, the former approach is better for the 3-D computations. In the 2-D

case, the slower convergence rate resulting from performing a MG cycle only every third

fine-grid iteration is more than compensated for by the cheaper overall MG overhead,

whereas in the 3-D case, where the MG overhead costs are lower, the faster convergence rate

of performing one MG cycle per fine-grid iteration is dominant. These approaches are

mostly used in the results presented in subsequent sections.

5.3 2-D Multigrid Solutions

5.3.1 Test Problems

Various test cases shown in Table 5.1 were investigated to validate the implementation of the

multigrid cycles in the 2-D version of the Proteus code.

The geometry for the various cases are shown in Fig. 5.1. The first two test cases are the

steady, inviscid and viscous flow past a two-dimensional circular cylinder. Inviscid and

viscous solutions were obtained at different reference Mach numbers ranging from 0.05 to

0.6. A reference Reynolds number of 20 is assumed for the viscous case. For the Euler

inviscid flow, freestream conditions are prescribed at the far field which are then used to start

the computation. The exact potential flow solution is used to start the viscous flow

computations. The next two test cases are turbulent flow over a flat plate at zero pressure

gradient with a freestream Mach number of 0.3. The Baldwin-Lomax turbulence model was

used in the first case while the Chien k - t model was used in the second case.
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Table5.1:Descriptionof TestCasesfor 2-D

TestCase FlowProblem Coarsegrid Finegrid

1

2

Inviscid

Viscous
Cylinder

25X49 49X97

49X49 97X97

3 B/L 81X53
FlatPlate

4 Chien 81X53

161X105

161X105

Non-Linear 81X51
Transonic

Constant 81X51
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Fig. 5.1" Computational mesh for the test cases (a) Viscous flow around a cylinder (b) Euler
flow around a cylinder (c) turbulent flow over a flat plate (d) Sajben transonic flow.
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The Blasius solution for a laminar boundary layer over a flat plate was used to set the initial

conditions for the turbulent flow computations with the Baldwin-Lomax model. To start the

computations in the case with the Chien k - e model, the converged solutions from the

Baldwin-Lomax model were used to compute the turbulent quantifies required to march the

k - e equations. The last test case is a transonic turbulent flow in a converging-diverging

duct. The flow entered the duct subsonically, was accelerated through the throat to

supersonic speed, then decelerated through a normal shock and exited the duct subsonically.

This is a popular laboratory test case which can mimic real inlet flows; e.g., see Sajben et. al.

(1984). The geometry is obtained from the following equations:

1.4144 for-4.04_< x-< - 2.598

y = acosh_/(a - 1 + cosh_) for - 2. 598 < x < 7. 216 (5.16)

1.5 for 7.216_< x_< 8.65

where the parameter _ is defined as

= Cl(X/Xl)[1 "q- C2x/xl] C3

(1 - x/xt)C4 (5.17)

The various constants used in the formula for the top wall height in the converging

- 2. 598 -< x -< 0 and diverging (0 _< x -< 7. 216) parts of the duct are given in Table 5.2.

In all cases, appropriate boundary conditions were set so as not to impair the convergence

acceleration. The steady-state solutions of the various test cases described above are shown

in Fig. 5.2.
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Table 5.2: Constants for Computational Coordinates calculations

Constant Converging Diverging

a 1 . 4114 1 . 500

x t - 2. 5985 7. 216

C 1 0. 8100 2. 250

C 2 1. 0000 0. 000

C 3 0. 5000 0. 000

C4 O. 6000 O. 600
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5.3.2 Multigrid Performance

In order to evaluate the multigrid performance implemented in this study, the l 2 norm of the

residual for the continuity and momentum equations are plotted against the number of

iterations. For each of the coarse grids and the fine grid, three calculations are performed;

single grid, two-level multigrid (MG) and 3-level MG. Figs. 5.3 and 5.4 show the result of

the Euler flow at Mo_ = 0.2 where MG reduced the number of iterations by a factor of

about two. However, no gain is observed in the CPU saving (see Table 5.3). The additional

work unit required in this case by MG cycles offset the gain in convergence. Viscous flow

results are shown in Figs. 5.5-5.10 for different freestream Mach numbers. At M= = 0.2,

similar conclusions drawn for the Euler above are observed. At M= = 0.05 and

M o_ = 0.6, however, faster convergence and substantial savings in CPU time are obtained

especially on the fine grid. For instance, at M _ = 0.6, three-level MG at a CFL number of

four reduced the number of iterations by a factor of about five on the fine grid, at a measured

savings of about 62% of the CPU time. In this case also, multigrid successfully relaxes the

stiffness per time-step since the single grid computation failed if the CFL number is greater

than two, while the MG can go up to four. These results are summarized in Table 5.4.

The influence of turbulence models on the performance of multigrid is studied in cases three

and four. Figs. 5.11-5.12 show the convergence history of the three calculations mentioned

above for turbulent flow over a flat plate using the Baldwin-Lomax model to compute the

turbulence quantities. Convergence is accelerated by more than a factor of two both for the

coarse grid and fine grid. The measured saving in CPU time in this case is about 20% for the

fine grid and only about 10% for the coarse grid. The superiority of MG is finally

demonstrated in Figs. 5.13-5.14 where the Chien k - e model was used for turbulence

closure. In fact the single grid failed to converge even after a very large number of iterations

(10,000 for the coarse grid and about 9,000 for the fine grid), whereas the MG converged in

about 4,000 cycles. Further, the single grid computation was limited to a CFL number below
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Table 5.3: Multigrid Performance of 2-D Inviscid Test Problems

CPU Speedup
Grid Level CFL Iter Time (s) Factor Remark

Coarse

1 10 260 7.9

2 8 160 9.9

3 6 170 13.1

0.80

0.60

Optimal cfl

Optimal cfl

Fine

1 l0 420 28.6

2 10 230 29.6

3 l0 240 35.9

0.97

0.80
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Table5.4: Multigrid Performanceof 2-D ViscousTestProblems

Case CPU Speedup
Grid Level CFL Iter Time(s) Factor

M=0.2

Coarse

1 10 340 17.5

2 10 230 23.0 0.76

3 10 240 28.2 0.62

Fine

1 10 710 103.7

2 10 390 104.8 .99

3 10 330 97.6 1.06

M=0.6

Coarse

1 2 1460 72.3

2 2 720 69.7 1.03

3 2 780 86.2 0.83

2 3 510 49.6 1.45

3 4 750 83.3 0.87

Fine

1 2 3440 492.8

2 2 1710 448.7 1.09

3 2 1430 403.1 1.22

2 3 1140 299.0 1.65

3 4 680 194.0 2.54

M--O.05

Coarse

1 10 1270 62.6

2 10 760 73.5 0.85

3 10 780 86.5 0.72

Fine

1 10 2510 361.3

2 10 1280 336.7 1.07

3 10 1100 312.5 1.16
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five, while the MG was successful up to a CFL number of 20. Although MG acceleration is

clearly demonstrated in each of the models, it performed much better with the Chien model.

The additional stiffness in the latter introduced by solving the k - e equations is by far offset

by its better predictions of the Reynolds stresses. Tables 5.5 summarizes these resutls.

From Fig. 5.15, the trace of the skin friction at a point in the flow domain shows that the

Sajben transonic flow is inherently unsteady. This is further confirmed in Figs. 5.16-5.17

where the convergence history oscillates for both the single grid and two-level MG

calculations. In Fig. 5.16, the Jameson type of non-linear dissipation has been used whereas

in Fig. 5.17, constant dissipation was assumed. Similar results (not shown) were observed on

the finer grid. This inherent unsteadiness has also been observed from experiment by Sajben

(1984) and therefore cannot be solved with the multigrid technique developed here.

Multigrid methods for unsteady problems need to be implemented (see Ibraheem, 1994).

5.3.3 Convergence Rates

In the above computations, the results of both the single grid and the bi-grid stability

analyses are continuously used as guidelines. For instance, the asymptotic convergence rates

(using Eq. (3.28)) that are computed from practical multigrid solutions of the test cases for

the inviscid and viscous flows past a circular cylinder are compared with the predictions

from analysis in Fig. 5.18. Rather than evaluating the corresponding bi-grid and smoothing

factors from uniform flow conditions, however, as performed in the analysis presented in

Chaps. 2 and 3, they are computed at each point in the flow field, thereby accounting for the

variation in flow properties. Figures 5.18(a) and 5.18(b) show estimates from both analyses

based on the computed frozen coefficients of the inviscid and viscous flows, respectively.

These results are also summarized in Table 5.6, and are compared with the asymptotic

convergence rate measured from the practical multigrid computations. For both flow

problems, the smoothing factor deviates more from the practical solution than does the

bi-grid factor.
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Table5.5:MultigridPerformanceof 2-D FlatPlateTestProblems

Case
CPU Speedup

Grid Level CFL Iter Time (s) Factor Remarks

B/L

Coarse

1 20 3320 283.2

2 20 1730 268.8

3 20 1590 271.2

1.05

1.04

Fine

1 20 6950 1827.0

2 20 3690 1725.0

3 20 3060 1575.0

1.05

1.16

Chien

Coarse

1 5 >10000 >1180.0

2 20 3470 650.0

3 20 3600 732.0

>1.81

>1.61

Max. cfl

Fine

1 5 >8680 >3422.0

2 20 5540 3298.0

3 20 5580 3398.0

>1.03

>1.03

Max. cfl
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Table5.6: ConvergenceCharacteristicsof 2-D EulerandViscousFlowsarounda
Cylinder

Euler Viscousflow
CFL

J.l__sg J.max_bg Qmg 2/a_sg 2 max_bg Qmg

0.5 0.88 0.94 0.99 0.95 0.96 0.99

1.0 0.80 0.92 0.98 0.91 0.94 0.98

2.0 0.76 0.91 0.96 0.85 0.93 0.96

4.0 0.81 0.90 0.93 0.77 0.92 0.94

6.0 0.84 0.90 0.92 0.76 0.91 0.93

8.0 0.87 0.90 0.92 0.81 0.91 0.92

10.0 0.89 0.90 0.94 0.84 0.91 0.92

12.0 0.91 0.90 0.95 0.87 0.91 0.92
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5.4 3-D Multigrid Solutions

5.4.1 Test Problems

The test cases for the 3-D multigrid procedure are the two problems chosen to illustrate the

original 3-D Proteus computer code (Towne et. al, 1992), namely the developing laminar

flow (M=0.1, Re=60) in a rectangular duct (Aspect Ratio = 5:1) and the turbulent flow

(M=0.2, Re=40,000) in an S-duct. In the latter, computations were performed separately

with either the algebraic Baldwin-Lomax turbulence model or the two-equation k - e

turbulence model with low Reynolds number extensions proposed by Chien (1982). In each

case, computations were performed on the standard grid and on a coarser grid. Table 5.7

summarizes the test cases. The standard CFL number of ten is used on the finest grid in each

case.

Table 5.7: Description of Test Cases for 3-D

Test Case Flow Problem Coarse grid Fine grid

1 Laminar Rectangular 41X21X21 101X21X41
duct

3 B/L - 81X33X65

S-duct

4 Chien 41X17X33 81X33X65

5.4.2 Multigrid Performance

The convergence rates of the single grid and the multigrid solutions for the developing duct

flow are compared in Figs. 5.19 to 5.22. Coarse grid results in forms of the L2 norm and the

average residuals of the continuity, x-, y-, z-momentum equations are presented in Figs.

5.19 and 5.20, respectively. It is clear that the MG solutions converged faster than the single

grid one. The initial multigrid error is lower, because the full multigrid procedure provided

better initial guesses on the fine grid by initially performing about 200 iterations on the
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coarsestgrid.In thiscasetheMGcyclewasperformedeverythird finegrid iteration,sothat

theeffectivework unitsfor eachMG cycleis about1.6.Thus,for afive orderof magnitude

reductioninx-momentumresiduals,thereisabouta20%savingin totalCPUtimewith the

3-level MG procedure.The fine grid resultspresentedin Figs.5.21and5.22show even

bettersavings.In this case,thereis anMG cycle for everyfine-grid iteration, sothat the

effectiveworkunitsfor eachcycleis two.Butfor afive-orderreductionin residualstheMG

method(2 or 3 level) requiresabout400iterationswhereasthesinglegrid methodrequires

about1700iterations,i.e.,morethan50%reductionin CPUtime for theMG solutions.

Theresidualsfor thecalculationsof the turbulentS-duct flow with the Baldwin-Lomax

modelarepresentedin Figs.5.23and5.24.Theconvergenceratesaremuchslowerin this

casein comparisonto thelaminarflow. Nevertheless,the3-level MG proceduresshowed

much fasterconvergence,with a reductionof about50%in CPU time to reachthe same

residuallevel.Surprisingly,thek - e model computations showed much faster convergence

rates. Coarse grid computations are presented in Figs. 5.25 and 5.26. In this case only two

level MG cycles could be used. The effect of the CFL number used on the coarser grid is

shown; the higher CFL number of five leads to faster convergence and is thus preferable, but

it has been found to lead to instability and divergence in some problems. The computational

saving in this case is about 30%, with a residual reduction of five orders in magnitude

achieved in about 1,700 iteration with two level MG procedure compared with 4,800

iterations with the single grid method. Corresponding fine grid results are presented in Figs.

5.27 and 5.28. However, due to high computational costs, only residual reductions of two

orders of magnitude with the MG procedure are presented. The single grid computation

produces only one order of magnitude reduction in residuals in the same number of

iterations. By extrapolation, it is estimated that the savings in CPU time for the MG solution

is about 40-50% in this case.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

For a numerical scheme it is often the practice that a suitable time step is chosen heuristically

or is obtained based on the results of stability studies of model scalar equations. For

complicated multidimensional problems, however, this approach is not only inaccurate but

also expensive. In this work the stability analysis of the full, coupled 3-D Euler and

Navier-Stokes equations has been investigated for various numerical schemes. These

schemes include three upwind difference based factorizations, namely Spatial, Eigenvalue

and Combination splits, and two central difference based factorizations, namely the LU and

ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting

methods are considered. The range of CFL numbers over which each scheme is stable and the

optimum CFL numbers are presented.

In the process of computing the convergence characteristics of the above schemes, a measure

of multigrid performance, namely the smoothing factor, is also evaluated. Computation of

the smoothing factor is, however, restricted to the high frequency range only and does not

incorporate the transfer processes that are fundamental to multigrid methods. The bi-grid

procedure which was mathematically formulated to account for aliasing effects and the

transfer operations has, therefore, been utilized to assess the performance of different

numerical schemes for model problems using the diffusion, convection and linearized

burger's equations. Compared to bi-grid results, it is observed that the smoothing factor

predicts poorly the performance of certain numerical schemes as smoothers for the multigrid

procedure. Motivated by these results, the bi-grid method is further used to assess the
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performanceof multigrid computationsof Euler and Navier-Stokessolutionsusing the

selectednumericalschemes.Theschemessuitablefor multigrid techniquesareidentified.

Theestablishedresultsfrom thesepredictionsservedasaguidein theimplementationof the

multigrid method for numerical computationsusing the Navier-Stokes equations.

Convergenceaccelerationto steadystateof various2-D and3-D testcasesrangingfrom

inviscid to viscousturbulentflows areinvestigatedfor differentgeometries.In general,

multigrid accelerationis foundto bemoreeffectivein3-D problemsthanin 2-D problems.

Savingof upto 60%CPUtimeareobtainedin severalof thetestcases.Furthermore,it was

observedthat for flows that areinherentlyunsteady,e.g. flows with flapping shocks,the

multigrid techniqueasimplementedfailed to accelerateconvergence.For suchproblems,

multigrid implementationhasto bemodifiedto accommodatetheir inherentunsteadiness.

This studycannotbecompletewithoutpointingout thedirectionsin whichfurtherresearch

shouldbeperformed.Sometime-steppingalgorithmshavebeeninvestigatedfor multigrid

smoothers.It wouldbehighly desirabletocompilethesmoothingpropertiesof manymore

of thepopularlyusedsmoothers.In thepresentwork, thebi-grid resultshavebeencompared

to eithertheidealmultigridsequencein thecaseof themodelBurger'sequation,or theFull

Multigrid methodin thecaseof theupwindandBeam-WarmingADI methods.Effort should

be madeto measurethe deviation of someother multigrid cycles from the bi-grid

predictions.Finally, time-dependentmultigrid algorithm can be used to solve those

problemsthatpossesinherentunsteadiness.
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APPENDIX A

INVISCID FLUX JACOBIANS

A .,.

S

I 0+uvy__! 1 0 0 0 l
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v u 0 0
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- 0 w u 0

C

0 0 0 1 0 l

-uw w 0 u 0

-vw 0 w v 0

l-_[_o-(_-1)_]-(_-I)_ -(_-I)_ _o__-_,(q_+2_)__-

where p = (7 - l)(peo - 0.Spq 2) and q2 = u _ + v3 + w_
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APPENDIX B

VISCOUS FLUX JACOBIANS

o o o o o1
- ! 0 0 0

a= -ff_,aE'_'= _, - (} 1 0 0
-w 0 0 1 0

_(q'-eo)-(_u 2-v 2-w 2) u(_-1_-i) v(1-.I_-¢) w(l-7_;) 7_,

S aF,,,
oo, "

0 0 0 0 0

-u 1 0 0 0

-_,, o _ o o
-w 0 0 1 0

ACq2 - eo)- (_v2 - u2 - w 21 u(1- :_'i)v(_ - 7_';)w(1- 7_.;)

0 0 0 0 i1

OG¢,, -u 1 0 0

Y=-_-7=_, -_ o a o
- 4_--t, 0 0 :[

:_-¢(q2-e*) - (3w2-u2-v 2) u(1-_;) v(1-:_-.¢) w(_-_,) _r;j

OEvty

RI -- -- e
OQ, " °°°°i] [°°°°i]2 0 {w 0 0 -_I-{v 0 -_ OE,,,

-u 1 0 0 , R2 - OQx - _ 0 0 0 0
0 0 0 0 -u 1 0 0

-_u_ _ -_ o -b,w _ o -_

ooo!]a...[oooo!]-v 02 1 0 0 0 0 02OF,, .1. - u - 0 0
$1- _z- _ - 0 _ OOo0 ,$2--_ _ _:_ 0 1 0 _

-_u_ -_ u o -I_ o _ -]_

0 0 0 0 i1

OGv,x -w 0 0 1 OGv

= _ = 0 02 0 0 , Y2 = OQ r ,Y1 OQx _" 2u

-_ 0 0- uw -_w 0 u

where P r = -_- = &7___.

ooooi1o0 0 0 0

-w 0 0 1
2

v 0 -2I 0vw - jw v

145



APPENDIX C

THE BI-GRID AMPLIFICATION MATRIX A_(O)

Mll Mr2 Ml3 Ml4 Mls Ml6 MI7 Mls

M21 Mz2 M23 M_ M2s M26 M27 Mz8

M31 M32 M33 M34 Ms5 M36 M37 M3s

m(o) : g41 M42 M43 M44 M4s M46 M47 M4s

M_l M52 Ms3 M54 Ms5 Ms6 M57 Mss

M61 M62 M63 M64 M65 M6_ M67 M6s

MT1 M72 M73 M74 M75 M76 M77 M78

Msl Msz M83 M84 Ms5 Ms6 M87 M88
m m

The diagonal elements are:

MI, = I - )hH(oI_IH(81;Lh(OI)s_|(O|)_22(OI;LHI

M22 = I - ^I_82)f(82_Lh(82)S_'(82)_2(82;L[¢ '

M33 : I - )_83_If(83_Lh(O3)S_(83)_;2(83_Lh '

Ms. - I - )_8")f(08_Lh(88)S_'(8_)_zz(88_L[_'

and the oft;diagonal elements are:

where, for example,

# . N ,.^ ,.^ i .^ 2 _L-M,,,,, = - Itt(8 )lh(8 )Lh(8 )_ (8 )_ (8 ) u'

M21: --_htl(82)_Hh(ol)ALh(Ol)_lll(82)_2(Sl)^gi_11
U.. = - 2_8,))_(8"-1L(82)_,(8@(8%'
u_, = - _8,))f(8')L(8')_,,(8")_(8%,'
M7o= - _,,(87))f(86)t,(8_)_'(8_)8_(86)t,_'

Each element is a 5x5 matrix corresponding to the 5 dependent variables.
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APPENDIX D

JCL FOR STABILITY CODES

#QSUB -1M 1.0mW -1T 300
#QSUB -mb -me
#QSUB -r stab
#QSUB -s/bin/sh

set -x

ja

#Setup and link necessary input/output files

touch stab3d_sg.out
In stab3d_sg.out fort.22

cf77 -o temp.ex stab3d_sg.f-limsl
or cf77 -o temp.ex stab3d_bg.f-limsl

for single grid stability analysis
for bi-grid stability analysis

#Run code

temp.ex<<EOD

Single Grid Convergence characteristics for Navier-Stokes equations @ Re = 100
&io

nout = 22,
&end

&num
cfls=0,
cfle=30,
delcfl=2,
avs4e= 1,
avs2e=0,
avs2i=2,

&end

&flow
ieuler=0,

fy=10, fz=10,
a_attack=45, a_yaw=45,
rnachr=0.5
rer=-800,

&end

fortran output file

Starting cfl
Stopping cfl
cfl interval
amount of 4th 0 explicit artificial viscosity

amount of 2nd 0 explicit artificial viscosity, always zero
amount of implicit artificial viscosity

Viscous or inviscid flow
Aspect Ratios
Angle of Attack, Angle of Yaw
Reference Mach number
Reference Reynolds number

EOD
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APPENDIX E

DIFFERENT MULTIGRID CYCLES

V-Cycle

gh

g2h

g4h

gSh

gh

g_

g4h

gSh

W-Cycle

gh

gZh

g4h

gSh

Full Multigrid V-Cycle
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